-
公开(公告)号:CN110691140B
公开(公告)日:2022-02-15
申请号:CN201910991135.1
申请日:2019-10-18
Applicant: 国家计算机网络与信息安全管理中心 , 长安通信科技有限责任公司 , 杭州东信北邮信息技术有限公司
IPC: H04L67/1029 , H04L65/1016 , H04M3/22
Abstract: 一种通讯网络中的弹性数据下发方法,包括:前端接入装置定期将所在业务服务器的能力数据上报给后端控制器;后端控制器保存前端接入装置上传的能力数据和上传时间,按照一定间隔时间T,根据前端接入装置所上传的能力数据,计算前端接入装置的黑白灰名单号码量,并生成策略数据,同时保存计算的前端接入装置的黑白灰名单号码量和对应时间,然后将所生成的策略数据下发给前端接入装置;前端接入装置保存后端控制器下发的策略数据,按照策略数据,对所在业务服务器所接收到的呼叫信令进行检测和匹配。本发明属于信息技术领域,能根据业务服务器的实际能力,实时调整被分配的黑白灰名单号码量,从而弹性开启不同的检测能力。
-
公开(公告)号:CN113779961A
公开(公告)日:2021-12-10
申请号:CN202010518026.0
申请日:2020-06-09
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/211 , G06F40/253 , G06F40/289
Abstract: 本发明提供一种自然语言文本的惯用句式提取方法及电子装置,包括:对采集到的每一语句进行分词、词性标注及依存句法分析;将各语句转换为若干单句,并依据词性标注结果与依存句法分析结果,对各单句主干进行抽取,将各单句表示为词汇和词性标签的列表;将各单句的列表进行合并,得到各语句的惯用句式。本发明提出一种不损失句式信息的长难句化简方法,针对句式提取的需要对中文长难句中非句子主干部分进行处理,提高句式提取准确度,本发明还提出一种句式信息表示结构,使用词汇、词汇候选集、词性标签来表示句式信息,保留尽可能多的句式信息。
-
公开(公告)号:CN113205801A
公开(公告)日:2021-08-03
申请号:CN202110498059.8
申请日:2021-05-08
Applicant: 国家计算机网络与信息安全管理中心 , 清华大学
Abstract: 本申请涉及一种恶意语音样本的确定方法、装置、计算机设备和存储介质。该方法包括:获取初始语音样本集;根据预设的多种恶意类别对初始语音样本集进行分类,得到多种恶意类别中每种恶意类别对应的语音样本子集;根据每种恶意类别对应的语音样本子集中的语音样本信息,计算每种恶意类别对应的语音样本子集的恶意度;将恶意度满足预设恶意度条件的恶意类别对应的语音样本子集中的语音样本,确定为恶意语音样本。本方法基于语音样本子集的恶意类别以及恶意度可自动确定恶意语音样本,有利于提高恶意语音样本的确定效率。
-
公开(公告)号:CN112836042A
公开(公告)日:2021-05-25
申请号:CN202011092228.X
申请日:2020-10-13
Applicant: 讯飞智元信息科技有限公司 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种有害音频识别方法、装置、电子设备及计算机可读介质。该有害音频识别方法,包括:获取待识别音频数据进行特征提取,并输入到关键词匹配模型,输出音频数据的开始时间和结束时间以及识别的文本内容;对所述识别的文本内容通过向量机算法SVM进行分类,生成文本集合结果。本发明通过获取待识别音频数据进行特征提取,并输入到关键词匹配模型,输出音频数据的开始时间和结束时间以及识别的文本内容;对所述识别的文本内容通过向量机算法SVM进行分类,生成文本集合结果,不断更新有害音频的正例样本库,提高有害音频检测的准确率。
-
公开(公告)号:CN112435672A
公开(公告)日:2021-03-02
申请号:CN202011105330.9
申请日:2020-10-15
Applicant: 讯飞智元信息科技有限公司 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种声纹识别方法、装置、设备及存储介质,该方法包括:获取用户的包含登录指令待识别的音频数据,输入声纹提取模型,输出声学特征;将所述声学特征输入已训练的声纹识别模型,输出识别文本;根据预先存储的验证音频数据对所述识别文本进行识别,以识别用户身份;响应于所述用户身份识别成功,执行所述登录执行。本发明针对如何解决由于传统声纹识别算法的局限性,通过获取用户的包含登录指令待识别的音频数据,输入声纹提取模型,输出声学特征;将所述声学特征输入已训练的声纹识别模型,输出识别文本;根据预先存储的验证音频数据对所述识别文本进行识别,以识别用户身份,提高音频数据进行登录验证的准确率。
-
公开(公告)号:CN108834148B
公开(公告)日:2021-02-26
申请号:CN201810433168.X
申请日:2018-05-08
Applicant: 国家计算机网络与信息安全管理中心 , 杭州东信北邮信息技术有限公司 , 长安通信科技有限责任公司
IPC: H04W12/128 , H04M3/436 , H04L12/24 , G06F9/455
Abstract: 一种面向5G的基于NFV的诈骗电话处置系统和方法,包含虚拟化诈骗电话处置服务器VSCS,VSCS包含有:AS‑VDU装置,接收电信网发送来的呼叫消息,从策略中提取多条处置规则,然后按优先级由高到低的顺序,顺序执行每条处置规则,并控制MS‑VDU装置对呼叫进行辅助检查,以识别呼叫中的主叫号码是否是非法号码,如果是,则按处置规则进行处置,将相关数据发送给管理Portal服务器;MS‑VDU装置,辅助AS‑VDU装置对呼叫进行检查。本发明属于通信领域,能升级面向NFV架构的诈骗电话处置系统,集NFV管理与业务管理功能于一体,从而满足未来5G方向的功能需要,实现虚拟化功能与业务管理功能的实时便捷管理。
-
公开(公告)号:CN111709472A
公开(公告)日:2020-09-25
申请号:CN202010543099.5
申请日:2020-06-15
Applicant: 国家计算机网络与信息安全管理中心 , 杭州东信北邮信息技术有限公司
Abstract: 一种动态融合规则到诈骗行为识别模型的方法,包括:由全量通话记录生成电信通联网络:G={V,E,Y},并据此构建识别诈骗行为的时空图;读取诈骗行为识别规则表中的每条规则,计算每个用户对应于每条规则的转换值;将每个用户对应于规则的转换值构成每个用户的通话特征指标向量,每个用户的通话特征指标向量即是时空图中每个用户的节点特征;构建、并训练诈骗行为识别模型,然后将待识别用户的节点特征输入至诈骗行为识别模型,并根据模型输出判断待识别用户是否是可疑诈骗行为号码。本发明属于信息技术领域,能实现规则和模型的动态融合,从而实时检测、并准确识别各种诈骗行为。
-
公开(公告)号:CN111708887A
公开(公告)日:2020-09-25
申请号:CN202010542354.4
申请日:2020-06-15
Applicant: 国家计算机网络与信息安全管理中心 , 杭州东信北邮信息技术有限公司
Abstract: 一种自定义规则的多模型融合的不良呼叫识别方法,包括:构建规则策略模型:设置若干条规则,将多条规则通过逻辑运算符连接构成策略,并设置策略的模型融合方式,由所有策略构成规则策略模型;构建识别不良呼叫的卷积神经网络和基于不良呼叫投诉的BERT文本分类模型;根据策略包含的规则的计算式,为每条策略生成递归计算表达式,然后执行递归计算表达式以获得策略执行结果,同时,运行卷积神经网络和BERT文本分类模型以获得输出结果,最后根据每条策略的模型融合方式和执行结果、卷积神经网络和BERT文本分类模型的输出结果,计算得到不良呼叫识别结果。本发明属于信息技术领域,能将规则和隐性表征模型有效融合到不良呼叫识别技术中。
-
公开(公告)号:CN110188805A
公开(公告)日:2019-08-30
申请号:CN201910414965.8
申请日:2019-05-17
Applicant: 国家计算机网络与信息安全管理中心 , 杭州东信北邮信息技术有限公司 , 长安通信科技有限责任公司
IPC: G06K9/62
Abstract: 一种诈骗群体的识别方法,包括有:步骤一、提取每对疑似诈骗号码和受害人号码之间的通话和短信话单,分别构建通话特征向量和短信特征向量,将所有疑似诈骗号码和受害人号码的通话特征向量和短信特征向量输入诈骗行为特征提取模型,从而获得每对疑似诈骗号码和受害人号码的诈骗特征指纹;其中,诈骗特征指纹用于标识每对疑似诈骗号码和受害人号码之间的诈骗行为程度;步骤二、根据每对疑似诈骗号码和受害人号码的诈骗特征指纹,识别每两个疑似诈骗号码之间的区别度,并将相互之间区别度低的疑似诈骗号码构成一个诈骗群体。本发明属于信息技术领域,能基于通话和短信话单,全面且准确的识别由诈骗行为接近的诈骗号码所构成的诈骗群体。
-
公开(公告)号:CN109587350A
公开(公告)日:2019-04-05
申请号:CN201811373658.1
申请日:2018-11-16
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04M3/22 , H04W12/12 , H04W16/22 , G06F16/2458
Abstract: 本发明公开了一种基于滑动时间窗口聚合的电信诈骗电话的序列异常检测方法,属于数据挖掘与机器学习和商务智能领域。首先构造训练用户数据集,回溯被叫用户全部通话记录,形成各被叫用户通话序列。利用cos相似度函数,计算序列结构相似度和统计特征相似度并进行线性组合,得到加和相似度。然后通过K-Means聚类模型得到K类用户,构成独立的序列训练数据集,通过滑动时间窗口,形成K个训练集。最后在每个训练集上训练iForest模型,得到K个异常检测模型。每个被叫用户通过对应的异常检测模型识别异常,当最大值高于阈值h时,该被叫用户是高风险的被叫用户。每过固定时间段更新K-Means模型和异常检测模型。本发明缓解了数据稀疏性问题,发现基于群组的异常特征。
-
-
-
-
-
-
-
-
-