一种原位合成的耐高压凝胶聚合物电解质

    公开(公告)号:CN115275334B

    公开(公告)日:2024-12-24

    申请号:CN202210397713.0

    申请日:2022-04-15

    Abstract: 本发明涉及一种原位合成的耐高压凝胶聚合物电解质,属于凝胶聚合物电解质技术领域。所述电解质由如下方法制得:在避光且氧气和水含量均小于1ppm的保护气体氛围中,将PETT和已二酸二乙烯基酯按照1:(1~4)的物质的量之比加入电解液中,得到混合溶液a,其中PETT的浓度为(0.2~5)mol/L,再加入自由基聚合光引发剂混匀,得到混合溶液b,排除所述混合溶液b中的气泡,得到前驱体溶液;用前驱体溶液浸润正极中正极材料0.5h~2h,再使用可见光照射0.2h~1h,在正极上得到所述电解质。所述电解质具有良好的离子电导率和锂离子迁移数,并具有宽的电化学窗口,其与正极的界面相容性好。

    一种阻燃固态电解质的制备及应用

    公开(公告)号:CN117790913A

    公开(公告)日:2024-03-29

    申请号:CN202311680533.4

    申请日:2023-12-08

    Abstract: 本发明公开了一种阻燃固态电解质的制备及应用,属于电池制备技术领域,S1、制备前驱体溶液:将分子塑晶和酯基单体按比例在室温下搅拌混合,得透明溶液;向透明溶液中加入锂盐和热引发剂后,再加入阻燃添加剂,磁力搅拌后得到均一透明的前驱体溶液;S2、原位热聚合:采用多孔基体材料作为支撑基体,将电池按照负极壳、负极、多孔基体材料、前驱体溶液、正极、垫片、弹片、正极壳的顺序装配好后,封装;电池放入恒温箱中烘烤,完成热引发聚合。本申请通过选取不同的分子塑晶与酯基单体的种类与比例,以及设置的阻燃添加剂的种类及用量不同,使制得的阻燃固态电解质具有优异的阻燃效果,且在实际应用安全性高。

    一种聚合物固态电解质、制备方法和应用

    公开(公告)号:CN117613376A

    公开(公告)日:2024-02-27

    申请号:CN202311603279.8

    申请日:2023-11-28

    Abstract: 本发明涉及一种聚合物固态电解质、制备方法和应用,属于化学储能电池技术领域。包括聚合物和锂盐,所述聚合物由含双键的碳酸酯基单体和含双键的酰胺基单体聚合而成;其中,酰胺基单体与碳酸酯基单体的摩尔比为1:5~20。所述聚合物固态电解质具有高离子电导率与高离子迁移数,可实现室温下固态锂离子电池的稳定循环。所述方法首先将含双键的碳酸酯基单体、含双键的酰胺基单体混合,然后加入锂盐和引发剂,分散均匀后,在60~80℃下加热聚合得到所述电解质。该方法操作简单易行,成本低廉,易于规模化制备。

    一种高熵氧化物正极材料及其制备方法和应用

    公开(公告)号:CN115010190B

    公开(公告)日:2023-12-22

    申请号:CN202210709063.9

    申请日:2022-06-22

    Abstract: 本发明公开了一种高熵氧化物正极材料及其制备方法和应用,所述高熵氧化物正极材料的分子式为LiNiaM1-a-bNbO2或yLi2MnO3·(1-y)LiM1-cNcO2,其中,0.1<a<1,0<b<1-a,0.1<y<1,0<c<1;所述M为Ti、V、Cr、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ta、La、Ce、Na、K、Mn、Mg、Al、Fe中至少5种金属元素,且每种金属元素物质的量相等;N为K、Mn、Mg、Al、Fe中至少1种金属元素。本发明通过调控和配比特定金属元素,并配合制备工艺,突破了传统制备高熵氧化物工艺中高煅烧温度的限制,实现了较短时间和较低煅烧温度中促进高熵氧化物前驱体单一固溶体的形成,显著降低了能耗,克服了现有制备高熵氧化物正极材料

    一种氟离子梯度掺杂富锂锰基正极材料及其制备方法和应用

    公开(公告)号:CN114420920B

    公开(公告)日:2023-11-07

    申请号:CN202210065248.0

    申请日:2022-01-20

    Abstract: 本发明公开了一种氟离子梯度掺杂富锂锰基正极材料及其制备方法和应用,包括以下步骤:A、按照现有方法制备富锂锰基正极材料;B、将氟盐置于溶剂中溶解,然后搅拌加入富锂锰基正极材料,超声分散;C、研磨蒸干后,将得到的粉末转移至马弗炉中煅烧,煅烧温度为250-350℃,煅烧时间为3-4h,煅烧后即得。本发明通过直接对富锂锰基本体材料进行二次处理,得到氟梯度掺杂的改性材料,其不仅可以抑制材料表面释氧,还减少了过渡金属向锂层的迁移,使后续循环过程中正极电压衰减得到改善;同时,F对O的不等价取代可以增加低价过渡金属离子的含量,内部F含量较表面少可以减小反应后期其对阴离子氧化还原的抑制作用,进而贡献更多的容量。

Patent Agency Ranking