一种卷积神经网络的压缩方法及装置

    公开(公告)号:CN114861868A

    公开(公告)日:2022-08-05

    申请号:CN202210325233.3

    申请日:2022-03-29

    Abstract: 本发明涉及人工智能模型压缩技术领域,具体提供了一种卷积神经网络的压缩方法及装置,包括:步骤1.初始化待压缩卷积神经网络的精简卷积神经网络;步骤2.将待压缩卷积神经网络上的注意力图迁移至精简卷积神经网络;步骤3.利用遗传算法确定并调节精简卷积神经网络上的注意力图迁移的最优位置;步骤4.判断是否达到迭代次数,若是,则输出精简卷积神经网络,否则,返回步骤2。本发明提供的技术方案,通过应用遗传算法,寻找最优的注意力迁移层位置,实现更有效的知识蒸馏。

    电力故障检测方法及装置
    53.
    发明公开

    公开(公告)号:CN116955651A

    公开(公告)日:2023-10-27

    申请号:CN202310963365.3

    申请日:2023-08-02

    Abstract: 本公开实施例提供了一种电力故障检测方法及装置。该方法包括:获取电力故障实体信息;其中,所述电力故障实体信息包括电力故障器件、所述电力故障器件的部件、所述部件的故障类型以及故障处理策略中的任意两项;将所述电力故障实体信息输入至目标电力故障检测模型中,输出所述电力故障实体信息对应的目标故障路径以及目标故障路径的置信度;根据所述目标故障路径进行电力故障检测。本公开实施例,通过将所述电力故障实体信息输入至目标电力故障检测模型中,输出所述电力故障实体信息对应的目标故障路径以及目标故障路径的置信度;根据所述目标故障路径进行电力故障检测的方式,可以提高故障检测的准确率以及故障检测的可解释性。

    一种电力行业目标检测方法及装置

    公开(公告)号:CN116704218A

    公开(公告)日:2023-09-05

    申请号:CN202310636391.5

    申请日:2023-05-31

    Abstract: 本发明涉及电力行业目标检测技术领域,具体提供了一种电力行业目标检测方法及装置,包括:获取待检测场景图像;将所述待检测场景图像作为预先训练的电力行业目标检测模型的输入,得到所述预先训练的电力行业目标检测模型输出的待检测场景图像的检测结果;所述检测结果包括下述中的至少一种:目标的位置和类别。本发明提供的技术方案,解决电力行业目标检测任务中的标注量大和训练准确性低的问题,并具备更广泛的适用性,提供了更高效、准确的目标检测解决方案,推动电力行业及其他领域的智能化发展。

    一种日志数据挖掘方法及系统
    55.
    发明公开

    公开(公告)号:CN115904703A

    公开(公告)日:2023-04-04

    申请号:CN202211369437.3

    申请日:2022-11-03

    Abstract: 本发明提供了一种日志数据挖掘方法及系统,包括:获取所需的日志文件的数据;采用MapReduce模型对数据进行数据处理操作获得属性数据;采用粒子群优化算法对属性数据进行寻优操作获得属性数据初始最优聚类中心;采用K‑means算法结合属性数据初始最优聚类中心对属性数据进行聚类操作获得最优聚类结果。本发明采用MapReduce模型进行数据处理操作的技术特征,提升大数据情况下数据准备的效率和准确率,并且采用粒子群优化算法确定聚类中心进而采用K‑means算法进行聚类操作的技术特征,消除了K‑means算法对初始聚类中心的依赖,提高了传统聚类算法初始聚类中心选取的准确性,提升了聚类算法用于日志数据挖掘结果的准确性和效率,极大提高日志数据挖掘的整体处理效率。

    一种基于可变形NTS-NET神经网络的多标签分类方法及系统

    公开(公告)号:CN114821155A

    公开(公告)日:2022-07-29

    申请号:CN202210324966.5

    申请日:2022-03-29

    Abstract: 本发明提出一种基于可变形NTS‑NET神经网络的多标签分类方法及系统,包括:将待分类图像输入预先训练好的网络模型得到图像的分类标签矩阵;基于分类标签矩阵确定待分类图像的分类标签;其中,网络模型是基于图像及其对应的分类标签对NTS‑NET神经网络进行训练得到的;NTS‑NET神经网络是基于在神经网络中引入可变性卷积和通道注意力机制构建的。本发明利用NTS‑NET作为基本框架,通过在网络模型引入可变形卷积实现对几何变换幅度较大的目标关键局部区域准确定位,并在审查器网络中引入通道注意力机制,有选择性地加强包含有用信息的特征并抑制无用特征,最终实现复杂图像的多属性分类。

    一种基于注意力机制的弱监督目标检测方法及系统

    公开(公告)号:CN114723958A

    公开(公告)日:2022-07-08

    申请号:CN202210330923.8

    申请日:2022-03-30

    Abstract: 本发明提供了一种基于注意力机制的弱监督目标检测方法及系统,包括:将获取的待检测图像通过卷积层进行特征提取,得到特征图;将所述特征图输入到注意力机制模块,得到空间增强后的特征图;基于所述空间增强后的特征图确定所述待检测图像是否为目标图像;其中,所述注意力机制模块,基于卷积层对特征图进行空间维度归一化得到注意力机制权重图,并结合所述特征图进行全局平均化操作得到空间增强后的特征图。本发明采用卷积神经网络结合注意力机制目标检测的方法,解决了高精度标注的数据集费时费力,提高了准确率,实现了通过低质量的数据集来获得高质量的目标检测模型。

    一种跨媒体图像检索方法及系统

    公开(公告)号:CN113536013A

    公开(公告)日:2021-10-22

    申请号:CN202110618244.6

    申请日:2021-06-03

    Abstract: 本发明提出了一种跨媒体图像检索方法及系统,包括:获取数据库中所有图片和待检索的文本标题;将所述图片输入到预先构建的图片标题生成模型,得到所述图片对应的文本标题,并将所述图片与所述图片对应的文本标题以对的形式更新数据库中原始图片;采用文本匹配的检索方法从更新后的数据库中检索所述待检索的文本标题对应的图片;其中,所述图片标题生成模型是基于卷积神经网络‑循环神经网络进行训练,并采用强化学习方法对所述图片标题生成模型的参数优化后得到。本发明的技术方案采用卷积神经网络—循环神经网络进行训练,得到了实体之间的关系,并采用强化学习方法对图片标题生成模型的参数进行优化,提高了检索的效率。

Patent Agency Ranking