-
公开(公告)号:CN108564029A
公开(公告)日:2018-09-21
申请号:CN201810323645.7
申请日:2018-04-12
Applicant: 厦门大学
Abstract: 基于级联多任务学习深度神经网络的人脸属性识别方法,涉及计算机视觉技术。首先设计级联的深度卷积神经网络,然后在级联的深度卷积神经网络里,对于每一个级联的子网络,采用多任务学习,同时学习人脸分类、边框回归、人脸关键点检测、人脸属性分析四个任务,接着在基于级联多任务学习的深度卷积神经网络里,采用一种动态损失权重机制,来计算人脸属性的损失权重,最终根据训练好的网络模型,将级联的最后一个子网络的人脸属性识别结果作为最终的人脸属性识别结果。使用级联的方法联合训练了三个不同的子网络,达到了端到端的训练,优化了人脸属性识别的结果,不同于在损失函数里使用固定的损失权重,本发明考虑到不同人脸属性间的差异性。
-
公开(公告)号:CN104835174B
公开(公告)日:2017-12-15
申请号:CN201510269932.0
申请日:2015-05-25
Applicant: 厦门大学
IPC: G06T7/00
Abstract: 基于超图模式搜索的鲁棒模型拟合方法,涉及计算机视觉技术。准备数据集;建立超图模型G=(V,E),一个模型假设对应于超图中的一个顶点v,数据点则对应一条超边e:让每个顶点连接相应模型假设的内点,即超边;采用无参核密度估计方法评估每个顶点v的权重分数w(v),自此,模型拟合问题便转化为在超图中模式搜索问题;提出通过在超图中搜索权重波峰进行模式搜索;通过搜索到的模式和超图模型,确定每个结构的内点和参数;根据每个结构的参数和内点,对图像进行分割,完成模型拟合。能够缓解对数据分布的敏感性,建立的超图不需要任何的转化,可以直接被应用于模式搜索。
-
公开(公告)号:CN103455805B
公开(公告)日:2017-11-17
申请号:CN201310450629.1
申请日:2013-09-27
Applicant: 厦门大学
IPC: G06K9/00
Abstract: 一种新的人脸特征描述方法,涉及人脸识别。首先利用训练集对每幅图像建立差分图像集,其次将差分图像集中的每幅图像按照事先的规定提取LTPBP特征描述向量,然后按照约定的规则把LTPBP特征描述向量组合成10个不同的特征矩阵、利用LDA方法对生成的特征向量矩阵分别进行一次学习从而得到10个投影矩阵,再分别利用投影矩阵对原LTPBP特征描述向量进行投影学习得到降维后的LTPBP特征描述向量,最后把属于同一幅图像中得到的低维LTPBP特征描述向量串连起来生成PPC特征描述向量。提出与漂移差分方法相结合的LTPBP纹理特征描述向量,加速了特征提取的运算效率。
-
公开(公告)号:CN105975921A
公开(公告)日:2016-09-28
申请号:CN201610279313.4
申请日:2016-04-29
Applicant: 厦门大学
CPC classification number: G06K9/00771 , G06K9/6256
Abstract: 基于局部特征共生性和偏最小二乘法的行人检测方法,涉及计算机视觉技术。包括以下步骤:准备训练样本集,将训练样本的特征向量组合作为预测矩阵X,将训练样本的类别组合作为响应矩阵y;利用偏最小二乘法对预测和响应矩阵建立模型,求得权重矩阵W;根据权重矩阵W计算分数较高的特征作为候选特征,用于生成局部特征共生性;对局部图像块中的候选特征进行二值化并组合成局部特征共生性的二值化模式;计算二值化模式的概率分布,将其用于训练基于Boosted决策树的行人检测分类器;输入待检测图像,通过得到的分类器在待检测图像中找出分数较高的目标窗口作为可能的行人物体,完成检测。
-
公开(公告)号:CN105913423A
公开(公告)日:2016-08-31
申请号:CN201610214978.7
申请日:2016-04-08
Applicant: 厦门大学
IPC: G06T7/00
Abstract: 一种基于超像素的确定性模型拟合方法,涉及计算机视觉技术。包括以下步骤:A.准备数据集;B.对图片进行超像素分割;C.通过分析超像素信息,对输入的数据进行预分组,以降低算法搜索时间复杂度;D.在数据集的分组信息基础上,提出一种确定性生成假设方法;E.提出一种模型选择方法,每次选取最佳模型假设,同时去除多余模型假设;F.根据选取的每个模型实例,区分内点与野点,完成模型拟合。能提取超像素分割的有效信息,以确定性地生成高质量的模型假设。有效避免当前模型选择方法对内点尺度的敏感性。能确定地处理多结构模型数据,而且不需大量的迭代优化,从而保证方法高效性。
-
公开(公告)号:CN104573731A
公开(公告)日:2015-04-29
申请号:CN201510061852.6
申请日:2015-02-06
Applicant: 厦门大学
IPC: G06K9/62
Abstract: 基于卷积神经网络的快速目标检测方法,涉及计算机视觉技术。首先利用训练集训练出卷积神经网络参数,然后利用扩展图的方式解决最大池化丢失特征的问题并生成判别完备特征图;把卷积神经网络的全连接权重看成线性分类器,采用可能近似学习框架来估计线性分类器在判别完备特征上的泛华误差;根据泛华误差和所期望泛化误差阈值来估算所需线性分类器个数,最后在判别完备特征图上用线性分类器基于平滑窗的方式完成目标检测。显著提高检测效率和目标检测精度。
-
公开(公告)号:CN102622769B
公开(公告)日:2015-03-04
申请号:CN201210073384.0
申请日:2012-03-19
Applicant: 厦门大学
IPC: G06T7/20
Abstract: 一种在动态场景下以深度为主导线索的多目标跟踪方法,涉及一种多目标跟踪方法。A从双目摄像机中获取当前帧,对双目图像校正;B.对图像进行颜色分割得颜色块;C对场景进行三维重构,得稠密深度图;D在前一帧目标区域的扩大域内对深度信息聚类得深度类别;E根据D获取的深度类别对该区域的超级像素分类以及前景与背景分割;F对E提取的前景根据前一帧的表观模型做分割,提取最终的前景;G若跟踪器处于遮挡状态,则转入I;若没有被遮挡,则返回A,否则跟踪器记录前一帧的目标表观模型,转入H;H提取遮挡原目标的深度块,将跟踪器置于遮挡状态;I在当前遮挡块周围对原目标进行搜索,若发现原目标,跟踪器重新被置于正常状态,则返回A。
-
公开(公告)号:CN118968075A
公开(公告)日:2024-11-15
申请号:CN202410996894.8
申请日:2024-07-24
Applicant: 厦门大学
IPC: G06V10/30 , G06V10/44 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了基于同类目标融合数据增广的鲁棒X光图像目标检测方法,本方案方法主要基于工作的数据集在标签含有噪声的情况,其可以有效地消除标签噪声对X光安检图像目标检测器训练产生的影响,并且通过图像融合很好的模拟了X光图像中重叠遮挡的情况,让模型可以更好的学习到X光图片的固有特征。该方案不仅在多个公开地数据集上都取得了良好的性能,同时相比于传统的噪声标签学习方法,本方案是一种更加灵活,且贴近实际需求地解决噪声标签情况下X光安检图像目标检测的方案。除此之外,通过实验结果发现,本方案方法不仅在X光数据集中有效,在一些通用目标检测数据集中也有较好的效果。
-
公开(公告)号:CN113239833B
公开(公告)日:2023-08-29
申请号:CN202110551957.5
申请日:2021-05-20
Applicant: 厦门大学
IPC: G06V40/16 , G06V10/44 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 一种基于双分支干扰分离网络的人脸表情识别方法,涉及计算机视觉技术。提供可以处理表情图像中多种干扰因素的一种基于双分支干扰分离网络的人脸表情识别方法。首先设计一个双分支网络来分开学习表情特征和干扰特征,再根据干扰特征的不同类型在干扰分支中设计标签感知子分支和无标签子分支。在标签感知子分支中,利用辅助数据集的标签信息和迁移学习的方式学习常见干扰特征。在无标签子分支中,引入印度自助餐过程理论学习潜在干扰特征。最后,通过对抗学习,进一步分离干扰特征和表情特征,从而获得更有判别力的表情特征进行分类预测,有效地提升表情识别的性能。
-
公开(公告)号:CN113011429B
公开(公告)日:2023-07-25
申请号:CN202110295657.5
申请日:2021-03-19
Applicant: 厦门大学
IPC: G06V10/26 , G06V10/774 , G06V10/764 , G06V10/82 , G06V20/10 , G06N3/0455 , G06N3/0464 , G06N3/048 , G06N3/082
Abstract: 一种基于阶段性特征语义对齐的实时街景图像语义分割方法,涉及计算机视觉技术。首先利用轻量级图像分类网络ResNet‑18和高效空间‑通道注意力模块构建编码器,并使用多个不同设计的特征对齐模块模块与全局平均池化层构建解码器。接着,利用上述得到的编码器与解码器,构成基于编码器‑解码器网络结构的语义分割网络模型。最后将编码器中的特征与解码器的输出特征进行聚合并送入语义分割结果生成模块中,以得到最终的语义分割结果。在维持高分辨率的输入图像且不降低图像分辨率的情况下,能够以实时的速率高效地产生对应的分割结果。比起现有的实时语义分割方法,能够取得更加优秀的分割精度,在速度和精度之间取得更好的平衡。
-
-
-
-
-
-
-
-
-