-
公开(公告)号:CN106540678A
公开(公告)日:2017-03-29
申请号:CN201610935755.X
申请日:2016-11-01
Applicant: 东北大学
CPC classification number: B01J23/22 , B01J35/023 , B01J35/08 , B01J35/1019 , B82Y40/00
Abstract: 本发明属于材料领域,涉及一种三氧化二钒纳米颗粒,该三氧化二钒纳米颗粒呈类球形,粒径范围是50-100纳米,比表面积为120.4±0.1平方米每克。本发明还提供了三氧化二钒纳米颗粒的制备方法,方法包括:将市售五氧化二钒加入乙二醇中,搅拌混合均匀,形成悬浮液A;向悬浮液A加入盐酸,形成pH约为1的悬浮液B;加热悬浮液B,室温静置冷却,得到含有深蓝色沉淀的产物;将含有深蓝色沉淀的产物的混合溶液离心分离,洗涤并烘干,得到类球形纳米颗粒。本发明的钒氧化物纳米颗粒具有很高的比表面积,较强的结构稳定性,有助于其作为电学材料和催化剂性能的提高。
-
公开(公告)号:CN105948120A
公开(公告)日:2016-09-21
申请号:CN201610269565.9
申请日:2016-04-27
Applicant: 东北大学
CPC classification number: C01G31/02 , B82Y30/00 , B82Y40/00 , C01P2002/72 , C01P2004/03 , C01P2004/32 , C01P2004/61 , C01P2006/12
Abstract: 本发明提供了一种微纳颗粒,所述微纳颗粒是五氧化二钒微纳颗粒,由纳米片自组装形成。本发明还提供了所述微纳颗粒的制备方法,所述方法包括以下步骤1)将五氧化二钒加入乙二醇中,搅拌,使其混合均匀,形成悬浮液A;2)向悬浮液A加入碳酸氢钠溶液,形成悬浮液B;3)加热悬浮液B,后室温静置冷却,得到含有黑色沉淀的前驱物;4)将步骤3)所形成的含有所述前驱物的混合溶液离心分离,洗涤并烘干,得到纳米片自组装形成的花状氧化钒前驱物;5)将步骤4)得到的前驱物在空气气氛下煅烧,得到所述微纳颗粒。本发明还提供了所述微纳颗粒在新能源、环境检测、食品和医学领域的应用。
-
公开(公告)号:CN112320755B
公开(公告)日:2022-07-19
申请号:CN202011223658.0
申请日:2020-11-05
Applicant: 东北大学
Abstract: 本发明涉及一种用于超临界水流化床制氢放大研究的装置及方法,包括水箱、储料箱、高压柱塞泵、原料处理器、第一流化床反应器、第二流化床反应器、第三流化床反应器、第四流化床反应器、管式换热器、预热器、第二高压柱塞泵、冷却器、背压阀、高压分离器、高压背压阀、低压背压阀、低压分离器、气相色谱仪、TOC分析仪、多个阀门、多个流量计、温度测控系统、压力测控系统以及连接的管道。本发明独有的放大系统、合适的逻辑结构以及精巧的结构设置为超临界水流化床制氢技术的放大研究提供了一种可操作的实验装置。
-
公开(公告)号:CN111085674B
公开(公告)日:2021-09-03
申请号:CN201911352787.7
申请日:2019-12-25
Applicant: 东北大学
Abstract: 本发明涉及碳纤维复合增强材料技术领域,尤其是一种可协同延展的碳纤维增强金属基复合材料的设计理念,通过将碳纤维布折叠成波纹型植入到金属基体中,使碳纤维布的波纹形的起伏方向与塑性轧制方向一致;在后续的塑性轧制变形过程中,所述波纹形碳纤维布耦合铝合金基体协同延展变形,实现碳纤维布增强相与金属基体的延展性相匹配。本发明还涉及用于将碳纤维布以波纹型植入到金属基体中的专用设备以及制备可协同延展的碳纤维增强金属基复合材料的方法。本发明将内层的碳纤维布以波纹形态存在与金属基体中,以便在后续的热塑性轧制过程中,该波纹形结构的碳纤维能够耦合铝合金基体实现协同延展变形,从而克服碳纤维不具有延展性所带来的弊端。
-
公开(公告)号:CN113084196A
公开(公告)日:2021-07-09
申请号:CN202110349624.4
申请日:2021-03-31
Applicant: 东北大学
Abstract: 本发明涉及超声辅助铺粉的激光选区烧结制备纯钨零件的装置与方法,其主要针对现有工艺条件下选区激光烧结获得的纯钨材料致密度低、质量较差等问题。该方法将计算机仿真获得的优化工艺条件应用于超声辅助装备进行铺粉,提高烧结前铺粉床的致密度,并对不同粒度钨粉在计算机仿真获得的优化工艺条件下进行选择性激光烧结,从而实现高密度纯钨零件的制备。本发明方法在铺粉过程中使钨粉致密度及均匀性得到很大提升,使后续烧结得到的纯钨零件更加致密,同时,该方法有效节约资源,降低成本,缩短实验时间,解决了传统方法制备纯钨金属工艺流程长、时间长、工序复杂等问题。
-
公开(公告)号:CN113075083A
公开(公告)日:2021-07-06
申请号:CN202110350328.6
申请日:2021-03-31
Applicant: 东北大学
IPC: G01N9/02
Abstract: 本发明涉及一种粉末松装密度及超声振实密度测定装置及测定方法,包括工作台、支撑装置、输料机构、承接机构、超声振动头、控制系统和刮平机构。所述输料机构固定在所述支撑装置上端;所述承接机构用于测量所承载粉末的质量,所述承接机构包含容量筒和质量传感器,所述承接机构位于所述输料机构正下方;所述控制系统控制输料机构及刮平机构的启动和停止;所述刮平机构包括滑动螺母和螺杆,螺杆的一侧连接在微型电机的输出轴上,滑动螺母上设有一立杆,立杆上连接一刮板;所述超声振动头固定于所述容量筒的两侧;本发明结构简单紧凑,将原有的天平功能集合在整个实验装置内,通过超声振动将粉末振实从而测得振实密度,通过控制系统自动控制整个测量过程,通过合理的结构设计克服现有的堆积密度测量存在的缺陷,提高检测精度,测定方便、精准度高、操作简单。
-
公开(公告)号:CN112978797A
公开(公告)日:2021-06-18
申请号:CN202110226471.4
申请日:2021-03-01
Applicant: 东北大学
Abstract: 本发明公开了一种无定型氧化钽纳米球及其制备方法。其方法包括步骤:向氯化钽的乙醇溶液中加入草酸,搅拌均匀后移入高压反应釜进行醇热反应,获得无定型氧化钽纳米球。本发明方法获得的无定型氧化铈纳米球直径约为400‑500nm,粒度均匀,分散性好。无定型氧化钽纳米球的表面积与商业氧化钽相比显著增加,为染料分子提供了更多吸附位点,从而促进了吸附及光催化性能的提升。
-
公开(公告)号:CN112456556A
公开(公告)日:2021-03-09
申请号:CN202011373642.8
申请日:2020-11-30
Applicant: 东北大学
Abstract: 本发明公开了一种无模板法制备的氧化钽纳米球及其方法。其方法包括步骤:向氯化钽的乙醇溶液中加入尿素、草酸,搅拌均匀后移入高压反应釜进行醇热反应,获得氧化钽纳米球前驱物;收集上述前驱物置于马弗炉中煅烧后获得氧化钽纳米球。本发明方法获得的氧化铈纳米球直径为300‑400nm,粒度均匀,分散性好。氧化钽纳米球的表面积与商业氧化钽相比显著增加,为染料分子提供了更多吸附位点,从而促进了光催化性能的提升。
-
公开(公告)号:CN112284988A
公开(公告)日:2021-01-29
申请号:CN202011099784.X
申请日:2020-10-15
Applicant: 东北大学
IPC: G01N15/02
Abstract: 一种颗粒群当量直径的测量装置及方法,包括气体发生器、电子流量阀、多孔泡沫金属布风板、流化床、底部气压传感器、顶部气压传感器、信号转换器以及PC控制器。气体发生器通过导管与流化床相连。气体发生器与流化床之间导管上装有电子流量阀,并且电子流量阀和PC控制器通过数据线连接。流化床底部布置有多孔泡沫金属布风板。并且在流化床的底部和顶部分别安装有底部气压传感器和顶部气压传感器。底部气压传感器和顶部气压传感器通过数据线与信号转换器相连。信号转换器与PC控制器通过数据线连接。本发明结构简单、成本低廉、操作简单并且易于维护。并且能够有效的测量出颗粒群的当量直径,为流态化的研究打下了坚实的基础。
-
公开(公告)号:CN108906038B
公开(公告)日:2020-08-21
申请号:CN201810751886.1
申请日:2018-07-10
Applicant: 东北大学
IPC: B01J23/52 , C02F1/32 , C02F101/30
Abstract: 本发明涉及一种Au‑TiO2蛋黄结构纳米复合材料及其制备方法,其中,制备方法包括如下步骤:首先制备金纳米球,然后在金纳米球的表面包覆形成二氧化硅层,再在二氧化硅层的表面包覆形成二氧化钛前驱物介孔材料层,之后去除二氧化硅层,最后进行水热处理得到表面具有片状分支结构的Au‑TiO2蛋黄结构纳米复合材料。本发明中的制备方法工艺简单易操作、生产成本低、过程污染小、适合大规模生产,制得的Au‑TiO2蛋黄结构纳米复合材料具有独特的可移动核,且其表面具有片状分支结构,能够增大材料的比表面积、大大增强材料的光催化性能、且对太阳能具有较高利用率。
-
-
-
-
-
-
-
-
-