一种纤维素基可降解分离膜及其制备方法和应用

    公开(公告)号:CN117732281B

    公开(公告)日:2024-06-14

    申请号:CN202311793269.5

    申请日:2023-12-25

    Applicant: 浙江大学

    Abstract: 本发明公开了一种纤维素基可降解分离膜及其制备方法和应用,属于膜分离技术领域,该纤维素基可降解分离膜的制备方法包括:(1)将纳米纤维素水分散液涂覆于粘胶纤维无纺布上,经第一热处理得到纳米纤维素膜,进一步交联后进行第二热处理;(2)制备醋酸纤维素铸膜液,将醋酸纤维素铸膜液涂覆于步骤(1)处理后的纳米纤维素膜上,置于空气中干燥,得到该纤维素基可降解分离膜;醋酸纤维素铸膜液由醋酸纤维素和溶剂混合得到。本发明方法制得的纤维素基可降解分离膜的结构包括粘胶纤维无纺布基底层、纳米纤维素支撑层和醋酸纤维素分离层,能够用于脱盐、分盐、有机物去除等,在水处理领域应用前景广泛。

    一种分离层具有梯度结构的高水通量纳滤膜及其制备方法

    公开(公告)号:CN116747715B

    公开(公告)日:2024-01-23

    申请号:CN202310399414.5

    申请日:2023-04-14

    Applicant: 浙江大学

    Abstract: 本发明公开了一种分离层具有梯度结构的高水通量纳滤膜的制备方法,涉及膜分离技术领域,包括以下步骤:(1)通过静电喷涂方法将第一油相溶液和第一水相溶液雾化成液滴,并在液滴微界面处发生界面聚合反应沉积至聚合物超滤膜上,形成辅助分离层;(2)通过静电喷涂方法将第二油相溶液和第二水相溶液雾化成液滴,并在液滴微界面处发生界面聚合反应沉积至辅助分离层上,形成高选择性分离层,进一步热处理后得到所述的分离层具有梯度结构的高水通量纳滤膜;本发明方法易于实施,工艺可控性好,利用静电喷涂技术辅助界面聚合过程,提高了单体利用率,制备得到的产品纳滤膜离子选择性好,对(56)对比文件US 2020282422 A1,2020.09.10WO 2018120476 A1,2018.07.05WO 2021244163 A1,2021.12.09WO 2023284397 A1,2023.01.19翟晓东,陆晓峰,梁国明,张仪,许振良,王彬芳.界面缩聚法制备聚酰胺复合纳滤膜――I.复合纳滤膜的制备及其结构.华东理工大学学报.2001,(第06期),第643-676页.顾红霞;潘凯;董泽刚;曹兵.聚丙烯腈静电纺丝膜表面界面聚合制备复合纳滤膜.膜科学与技术.2012,(第06期),第50-54页.

    一种抗污除氯的进水隔网及其制备方法和应用

    公开(公告)号:CN115888439B

    公开(公告)日:2023-06-27

    申请号:CN202211739975.7

    申请日:2022-12-31

    Applicant: 浙江大学

    Abstract: 本发明公开了一种抗污除氯的进水隔网及其制备方法和应用,属于膜分离技术领域,制备方法包括:(1)调节稳定剂溶液的pH至酸性,向其中加入共轭单体、交联剂和引发剂,制备得到均匀的改性溶液;所述的共轭单体为吡咯、苯胺、噻吩或3,4–乙烯二氧噻吩中的至少一种;(2)将进水隔网浸入到改性溶液中,加入氧化剂,诱导共轭单体在进水隔网表面进行聚合反应,持续聚合反应半小时以上,洗涤烘干制备得到所述的抗污除氯的进水隔网。本发明通过在进水隔网的表面引入共轭聚合物,提高了进水隔网的抗污染性能及除氯能力,实现了还原脱氯后的除氯能力的循环再生,且工艺简单、反应条件温和,易于大规模生产。

    一种耐酸型高水通量聚四氟乙烯中空纤维微滤膜及其制备方法

    公开(公告)号:CN116212666A

    公开(公告)日:2023-06-06

    申请号:CN202310407210.1

    申请日:2023-04-17

    Applicant: 浙江大学

    Abstract: 本发明公开了一种耐酸型高水通量聚四氟乙烯中空纤维微滤膜及其制备方法,涉及膜分离技术领域,包括以下步骤:(1)将聚四氟乙烯中空纤维微滤膜浸泡于非离子表面活性剂的有机溶液中预改性,得到预改性膜;(2)将预改性膜浸润至多酚单体溶液中,充氧后于密闭条件下进行自聚反应,在膜表面及膜孔内构筑贻贝仿生涂层,制备得到所述的耐酸型高水通量聚四氟乙烯中空纤维微滤膜;所述的多酚单体含有邻苯二酚结构;本发明方法反应条件温和、工艺简单、设备要求低,改性后得到的耐酸型高水通量聚四氟乙烯中空纤维微滤膜不但水渗透通量提升9‑13倍,且具有优异的耐酸性能,在废水处理领域具有广泛的应用前景。

    一种基于粘结剂喷射的梯度孔结构陶瓷膜及其制备方法和应用

    公开(公告)号:CN115073202B

    公开(公告)日:2023-04-28

    申请号:CN202210635336.X

    申请日:2022-06-06

    Abstract: 本发明公开了一种基于粘结剂喷射的梯度孔结构陶瓷膜的制备方法,包括以下步骤:(1)对支撑层粉层、中间层粉层和功能层粉层分别逐层进行粘结墨水喷射,制备得到陶瓷膜坯体;(2)将陶瓷膜坯体加热烧结,制备得到所述的基于粘结剂喷射的梯度孔结构陶瓷膜;所述的支撑层粉层的厚度为750‑2500μm,包括陶瓷粉末、固体粘结剂粉末和烧结助剂粉末;所述的中间层粉层的厚度为25‑150μm,包括陶瓷粉末和固体粘结剂粉末;所述的功能层粉层的厚度为1.5‑10μm,包括陶瓷粉末和固体粘结剂粉末。本发明方法工艺简单,通过对陶瓷膜各层进行结构设计制备得到具有梯度孔结构的陶瓷膜,该陶瓷膜可应用于水处理和空气过滤领域。

    一种高水通量的反渗透膜及其制备方法和应用

    公开(公告)号:CN114534491B

    公开(公告)日:2022-11-25

    申请号:CN202210287997.8

    申请日:2022-03-22

    Applicant: 浙江大学

    Abstract: 本发明公开了一种高水通量的反渗透膜的制备方法,包括以下步骤:(1)对多孔支撑膜进行氨基接枝反应,制备得到反应活性支撑膜;(2)将水相溶液和含多元酰氯油相单体的油相溶液在反应活性支撑膜上经界面聚合制备得到所述的高水通量的反渗透膜;水相溶液中的水相单体为芳香胺单体。本发明通过对多孔支撑膜进行氨基接枝反应得到反应活性支撑膜,并在其表面进行界面聚合,反应活性支撑膜能够改变所形成的聚酰胺分离层结构,进而改善聚酰胺反渗透膜的水渗透性并维持其离子截留性能的稳定。本发明方法工艺简单、设备要求低,便于工业化生产,制得的高性能反渗透膜在水处理领域应用前景广泛。

    一种基于墨水直写的三层结构陶瓷膜及其制备方法与应用

    公开(公告)号:CN115321958A

    公开(公告)日:2022-11-11

    申请号:CN202210633326.2

    申请日:2022-06-06

    Abstract: 本发明公开了一种基于墨水直写的三层结构陶瓷膜的制备方法,包括以下步骤:(1)通过3D直写打印技术利用支撑层浆料、中间层浆料和功能层浆料制备得到三层结构陶瓷膜坯体;(2)将三层结构陶瓷膜坯体加热烧结,制备得到所述的基于墨水直写的三层结构陶瓷膜;支撑层浆料在3D直写打印过程中的挤出厚度为100‑3000μm;中间层浆料在3D直写打印过程中的挤出厚度为50‑200μm;功能层浆料在3D直写打印过程中的挤出厚度为2.5‑20μm;其中,支撑层浆料中的陶瓷粉末的平均粒径>中间层浆料中的陶瓷粉末的平均粒径>功能层浆料中的陶瓷粉末的平均粒径。本发明制备工艺简单温和,能耗低,可用于制备分离性能可调的三层结构陶瓷膜。

    一种基于反应活性支撑层的纳滤膜、制备方法及应用

    公开(公告)号:CN114642967A

    公开(公告)日:2022-06-21

    申请号:CN202210286734.5

    申请日:2022-03-22

    Applicant: 浙江大学

    Abstract: 本发明公开了一种基于反应活性支撑层的纳滤膜的制备方法,包括以下步骤:(1)对多孔支撑膜进行氨基接枝反应,制备得到反应活性支撑膜;(2)将水相溶液和含多元酰氯油相单体的油相溶液在反应活性支撑膜上经界面聚合制备得到所述的基于反应活性支撑层的纳滤膜;水相溶液中的水相单体为半芳香胺。本发明通过对多孔支撑膜进行氨基接枝反应得到反应活性支撑膜,并在其表面进行界面聚合,反应活性支撑膜能够改变所形成的聚酰胺分离层结构,进而改善聚酰胺纳滤膜的水渗透性并提高其离子选择性。本发明方法设备要求低,工艺简单,便于在传统聚酰胺纳滤复合膜制备工艺基础上进行改进,实现工业化生产。

Patent Agency Ranking