-
公开(公告)号:CN110738093B
公开(公告)日:2022-07-01
申请号:CN201910759157.5
申请日:2019-08-16
Applicant: 杭州电子科技大学
Abstract: 本发明公开了基于改进小世界回声状态网络肌电的分类方法,首先,利用小世界网络来改善ESN的储备池结构,再利用加边概率改进小世界网络,称该网络为改进小世界回声状态网络,这既提高了储备池的适应性,又提高了ESN的泛化能力和稳定性。然后,通过训练网络可以得到网络的输出权重,并以此为相应的特征。采集跌倒、走、坐、蹲、上楼、下楼这六种动作的肌电信号,利用ISWLESN提取相应的特征,再利用PCV降低特征维数。最后,利用散点图、类可分性指标和DBI来表征网络特征的性能。结果表明,ISWLESN有很好的聚类性能,用于支持向量机分类也有很高的精度。
-
公开(公告)号:CN111870241B
公开(公告)日:2022-05-17
申请号:CN202010637325.6
申请日:2020-07-03
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于优化的多维样本熵的癫痫发作信号检测方法。在这项研究中,本发明采用多维样本熵作为特征来区分癫痫发作状态和正常状态,并对其进行了优化,提高了计算效率。此外,通过结合多维样本熵征提取和Bi‑LSTM,开发了一种新的预测方法来预测癫痫发作。结果表明,该方法取得了良好的表现,可预测5分钟后脑电的多维样本熵,准确率高达80.09%,误报率为0.26/h。本研究的结果表明,所提出的预测方案更适合于实际癫痫发作预测。
-
公开(公告)号:CN114052750A
公开(公告)日:2022-02-18
申请号:CN202111579890.2
申请日:2021-12-22
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于标准模板肌电分解的脑肌信息传递规律提取方法。首先,安排受试者执行相应动作记录下同步的肌电信号和脑电信号。通过小波去噪先对sEMG信号完成预处理,再利用先验知识而总结提出的模板进行模板匹配,将肌电信号中的波形按照模板匹配的规则进行剥离MUAP进行分解。接着对分解出的信号序列分别提取MUAP数量、MUAP波幅、MUAP瞬时传导速度特征,构建肌电特征与同步脑电信号之间的实时变化关系图谱,显示在同一动作下脑肌电信号间的信息传递规律。本发明可以更为细化精确的找出脑肌间的信息传递方式,让所提取的特征更为敏感的响应每一次同步脑电的变化,这样可以更好地探究脑肌的信号变化规律率。
-
公开(公告)号:CN109674445B
公开(公告)日:2021-10-08
申请号:CN201811313078.3
申请日:2018-11-06
Applicant: 杭州电子科技大学
Abstract: 本发明提出了一种结合非负矩阵分解和复杂网络的肌间耦合分析方法;本发明采集了不同握力输出时,7通道表面肌电信号,首先采用广义偏定向相干计算多通道之间的相干性;然后用非负矩阵分解算法对相干性值进行分解;最后用复杂网络建立不同条件下的肌肉功能网络。利用图论的特征指标,评估肌肉功能网络信息流的传递效率。结果显示:不同握力下肌肉的激活程度存在显著性差异;肌肉间的耦合在10~20Hz波段上较为显著;并且在10~20Hz波段上其耦合程度随着握力水平不同呈现显著性变化。本发明通过对多通道肌间耦合分析,体现了中枢神经系统对不同输出握力的控制模式,为运动功能障碍的诊断和康复效果的评价提供依据。
-
公开(公告)号:CN110175510B
公开(公告)日:2021-05-25
申请号:CN201910285096.3
申请日:2019-04-10
Applicant: 杭州电子科技大学
Abstract: 本发明提出了一种基于脑功能网络特征的多模式运动想象识别方法。本发明首先定义网络功能连通增率作为一种新的脑功能网络特征,然后依据神经生理学肢体运动与大脑皮层对应关系,构建以不同导联为中心的区域网络,计算各区域的网络功能连通增率组成多维特征向量,输入到支持向量机中,实现对多模式运动想象的识别。本发明可实时、准确识别出人体多种模式运动想象动作,识别结果可用于辅助康复训练的人机交互系统。
-
公开(公告)号:CN112735595A
公开(公告)日:2021-04-30
申请号:CN202011609523.8
申请日:2020-12-30
Applicant: 杭州电子科技大学
Abstract: 本发明提出了一种工作记忆能力的综合评定方法。首先让被试执行工作记忆任务范式,从不同记忆负载的角度测试工作记忆能力并采集行为学数据与多通道脑电数据。其次提取行为学数据中的反应时长T与准确率AC作为特征,计算得到工作记忆能力的行为学评价指标。再次对采集得到的脑电数据进行处理,利用通道间的互相关系数构建出全脑功能网络,提取节点度、聚类系数和全局效率作为特征计算得到工作记忆能力的脑网络特征评价指标。最后综合行为学评价指标和脑网络特征评价指标,通过组合得到更全面更科学客观的综合评估指标,为经颅直流电刺激提升工作记忆能力的参数调节方式提供了思路。
-
公开(公告)号:CN112130668A
公开(公告)日:2020-12-25
申请号:CN202011031460.2
申请日:2020-09-27
Applicant: 杭州电子科技大学
IPC: G06F3/01 , A61B5/00 , A61B5/0488
Abstract: 本发明公开了一种R藤Copula互信息的肌间耦合分析方法。本发明首先进行多通道表面肌电信号的同步采集与预处理,其次利用非参数核密度估计边际分布函数,再进行R藤Copula的简单矩阵表示及参数估计,同时估计R藤Copula互信息和R藤Copula条件互信息;最后进行肌间耦合分析。本发明提出的RVCMI和RVCCMI为肌间耦合分析提供了一种新的研究方法和科学的理论依据,具有良好的应用前景。
-
公开(公告)号:CN111931078A
公开(公告)日:2020-11-13
申请号:CN202010645826.9
申请日:2020-07-07
Applicant: 杭州电子科技大学
IPC: G06F16/9537 , G06F16/9538 , H04W4/02
Abstract: 本发明公开了一种基于地图场景的信息交互系统和方法,其中信息交互系统包括移动终端和服务器端两个组成部分,移动终端收集互动信息并发送给服务器端,服务器端接收信息后进行数据的融合处理并将处理结果返回移动终端,最终移动终端将互动信息进行场景化的动态展示。本发明提供一种全新的信息交互方式,可以有效解决现有交互系统的架构局限性和场景单调性,提高信息的检索效率和交互体验。
-
公开(公告)号:CN111708978A
公开(公告)日:2020-09-25
申请号:CN202010727716.7
申请日:2020-07-23
Applicant: 杭州电子科技大学
IPC: G06F17/14 , G06F17/18 , A61B5/0488 , A61B5/04
Abstract: 本发明公开了一种多尺度时频肌间耦合分析方法。本发明首先进行多通道表面肌电信号同步采集并进行预处理;并对预处理后的数据进行噪声辅助的多元经验模态分解,得到有用的IMF尺度分量。其次对IMF尺度分量进行同步提取变换;具体为:对每个IMF尺度分量进行短时傅里叶变换,再乘以一个相位因子后进行同步压缩变换。然后计算时频互信息、时频归一化互信息和时频条件互信息;最后将上述计算结果进行多尺度时频肌间耦合统计分析。本发明为定量研究脑卒中患者上肢康复运动过程中不同时频尺度下的肌间非线性耦合强度特性提供了一种新方法。
-
公开(公告)号:CN110732082A
公开(公告)日:2020-01-31
申请号:CN201910923310.3
申请日:2019-09-27
Applicant: 杭州电子科技大学
IPC: A61N1/20 , A61N1/36 , A61B5/0484
Abstract: 本发明提出了一种采用经颅直流电刺激和功能性电刺激的运动功能闭环康复方法。首先对大脑皮层区域进行tDCS刺激,改善皮层活性并且促进神经重塑,提高MI-BCI的准确性。在此基础上采集多通道运动想象的脑电信号,构建通道重要性测度,获得通道特征权值矩阵,为各通道特征向量加权,构造特征加权logistic分类机。最后利用logistic分类机进行运动想象识别,根据识别结果进行FES刺激完成上肢动作,促进本体感觉上行反馈至中枢,与tDCS刺激引发重塑和运动控制的神经冲动下行一起,构成双刺激干预,塑造了“控制下行-感觉上行”的运动功能闭环康复回路,促使患者自然和全面的康复。
-
-
-
-
-
-
-
-
-