一种轻量化高精度恶意软件识别模型的鲁棒检测方法及系统

    公开(公告)号:CN113779581B

    公开(公告)日:2022-08-26

    申请号:CN202111077784.4

    申请日:2021-09-15

    Abstract: 本发明涉及一种轻量化高精度恶意软件识别模型的鲁棒检测方法及系统,包括:步骤1:获取应用软件的字节文件数据集,可视化为灰度图;步骤2:训练生成对抗网络,生成各类别恶意对抗样本灰度图,加入到恶意数据集;步骤3:将卷积自动编码器的编码器迁移为小规模学生模型;步骤4:采用知识蒸馏,将大规模教师模型的知识汲取到学生模型中;步骤5:采用最终得到的学生模型进行所属类别预测,即检测结果。本发明仅对字节文件进行处理,进而采用端到端的深度卷积模型自动进行高阶特征的提取及潜在模式的判别,不仅克服了分类算法高度依赖于繁琐的特征工程所提取的特征空间完整性的问题,亦可满足了恶意检测的实时性要求。

    面向隐私保护的信息物理系统的攻击检测方法及装置

    公开(公告)号:CN114338161B

    公开(公告)日:2022-08-16

    申请号:CN202111632491.8

    申请日:2021-12-28

    Abstract: 本申请公开了一种面向隐私保护的信息物理系统的攻击检测方法、系统、装置、设备及计算机可读存储介质,在传输监控终端采集的实时数据时,将基于差分隐私机制生成的加噪聚合数据进行预设非线性变换得到的待传输聚合数据通过网络通信通道传输,数据接收端对接收到的第一聚合数据进行预设非线性变换的逆变换,得到第二聚合数据,再根据第二聚合数据和基于卡尔曼滤波对当前时刻的聚合数据进行最优估计得到最优估计值的估计残差进行攻击检测,通过增加实时聚合数据的随机性消减了由于差分隐私机制引起的检测阈值过高,导致错误数据注入攻击者更容易注入攻击信号的问题,从而获得更好的检测率。

    基于图神经网络的政策文本多标签标注方法及系统

    公开(公告)号:CN112906382B

    公开(公告)日:2022-06-21

    申请号:CN202110160984.X

    申请日:2021-02-05

    Abstract: 本发明公开了基于图神经网络的政策文本多标签标注方法及系统,包括:获取待标注的政策文本;对待标注的政策文本进行预处理,对预处理后的政策文本进行分词;将分词得到的单词和预先得到的加权单词向量,输入到训练后的全连接神经网络中,输出待标注政策文本的多标签。高效的标签标注过程,利用廉价的计算资源,减少大量人工成本。相较于人工,实现更加精准的标签标注,不会因为文件信息量的长短而产生标签标注的错漏。及时性的政策文件多标签标注,快速进行所需政策文件的标签标注。减少了主观差异性,不会因为不同的工人的主观判断不同而造成大量的标注标签的差异性。

Patent Agency Ranking