-
公开(公告)号:CN116524596A
公开(公告)日:2023-08-01
申请号:CN202310507915.0
申请日:2023-05-08
申请人: 大连理工大学
IPC分类号: G06V40/20 , G06V20/40 , G06V10/40 , G06V10/62 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/08
摘要: 本发明属于计算机视觉与视频动作识别领域,公开了一种基于动作粒度分组结构的体育视频动作识别方法,提出了一种基于动作粒度的层次化分组结构,设计了一种轻量级的多尺度时空建模与信息融合机制。步骤如下:视频抽帧,分段随机帧采样,视频帧预处理,选取骨干网络,在骨干网络中插入动作粒度分组模块实现多尺度时空特征聚合,使用全连接层和softmax层进行类别预测,使用交叉熵损失对动作类别进行训练,训练及验证。通过使用本发明可有效的提取多粒度动作信息,适用于包含多层次类别的体育视频动作识别,并显著提高体育视频动作识别的精度。本发明作为一种基于动作粒度分组结构的体育视频动作识别方法,可广泛应用于体育视频动作识别领域。
-
公开(公告)号:CN112365048B
公开(公告)日:2022-09-20
申请号:CN202011243637.5
申请日:2020-11-09
申请人: 大连理工大学
摘要: 本发明属于人工智能领域,更具体地,涉及一种基于对手行为预测的无人车侦察方法,用以实现无人车集群在复杂环境中的侦察能够更智能地应对各种事件的发生,解决复杂环境中无人车侦察时,在遇到对手的情况下通过预测模型预测对手行为从而躲避抓捕的问题。本发明通过流算法和多臂赌博机算法为无人车在众多的对手候选模型中挑选最适应当前状况的对手候选模型,利用所选择的对手候选模型进行对手行为预测;同时该算法考虑到内存的限制,在任何时刻只处理候选模型集合的一小部分,实时动态地选择候选模型子集。
-
公开(公告)号:CN113299084B
公开(公告)日:2022-04-12
申请号:CN202110600132.8
申请日:2021-05-31
申请人: 大连理工大学
摘要: 本发明公开了一种基于多视角编码迁移强化学习的区域信号灯协同控制方法,属于机器学习与智能交通的交叉领域。方法包括一种多视角状态编码器以及一种迁移强化学习框架。提出的多视角状态编码器将路口的一维,二维状态以及邻域路口传来的状态信息进行整合编码,将结果作为路口智能体的实际输入。在提出的迁移强化学习框架中,首先独立地训练若干个专注于拟合能力的专家智能体;然后利用迁移来的专家智能体联合指导训练一个专注于泛化能力的种子智能体;最后将种子智能体的参数迁移到各个路口上进行自适应训练,并计算这些智能体与专家智能体的效果差异决定是否进行迭代训练。最终的智能体同时具有更好的决策能力和泛化性能,有效地缓解了交通拥堵。
-
公开(公告)号:CN114187655A
公开(公告)日:2022-03-15
申请号:CN202111430274.0
申请日:2021-11-29
申请人: 大连理工大学
IPC分类号: G06V40/20 , G06V40/10 , G06V10/774 , G06V10/762 , G06V10/74 , G06T7/66 , G06N3/08 , G06V10/82 , G06K9/62
摘要: 本发明属于人工智能与行人重识别领域,公开了一种基于联合训练策略的无监督行人重识别方法。针对摄像机间域间隙较大的问题,提出了一种摄像机间不变性特征学习方法,旨在让模型学习到可以区分不同摄像机下的不变性特征的能力。包括以下步骤:行人图像特征提取;聚类并分配伪标签;计算行人质心和摄像机质心;挖掘边缘特征和摄像机间不变性特征;行人实例特征和摄像机质心的更新;利用对比损失更新模型的参数。通过使用本发明可以有效的减少标签噪声,降低了摄像机间域间隙,并显著提高行人重识别的精度。本发明作为一种基于联合训练策略的无监督行人重识别方法,可广泛应用于行人重识别领域。
-
公开(公告)号:CN111738939B
公开(公告)日:2022-02-15
申请号:CN202010490188.8
申请日:2020-06-02
申请人: 大连理工大学
IPC分类号: G06T5/00
摘要: 一种基于半训练生成器的复杂场景图像去雾方法,属于应用于复杂环境的图像去雾领域,包括训练过程和使用过程。训练过程中,首先,使用CycleGAN网络在任意图像去雾数据集上进行训练,每训练50次输出一个实时去雾图像并保存当前模型,训练到2000次结束;其次,重复上述过程十次;最后,在保存的效果图中选取去雾效果最好并且没有颜色信息的无雾灰度图像,将其对应的保存模型中的生成器G作为最终的草图模块。使用时,将任何场景的有雾图像输入草图模块中,均可输出去雾后的灰度图像。本发明应用范围不局限于训练的数据集,该方法具有极强的适应性、可视性和真实性,能够应用到任何场景中,且能够帮助智能系统在受到浓雾影响的环境中也能发挥一定的效能。
-
公开(公告)号:CN112822191B
公开(公告)日:2021-11-02
申请号:CN202110010432.0
申请日:2021-01-06
申请人: 大连理工大学
摘要: 一种网络化协同系统中多维数据安全性检测的方法,其属于物联网信息安全技术领域。该方法基于异常的数据进行安全性检测,利用LSTM算法进行数据预测和时序特征提取,基于智能节点的状态建立知识图谱,在逻辑上建立数据间的联系。同时,将各状态的权重矩阵写入知识图谱中作为一种属性,以使神经网络能够快速地动态更新权重,提高判断精度和速度;通过对比预测值与实际值之间的差异,结合多元高斯分布模型,从数学角度建立数据间的联系,综合判断数据点的异常状态。该方法对节点数据的描述更加细致;较传统方法更能适应物联网的复杂网络环境。并且对物联网架构、传输协议等无依赖,具有较强的泛化能力,网络化协同系统均可使用。
-
公开(公告)号:CN113269617A
公开(公告)日:2021-08-17
申请号:CN202110630757.9
申请日:2021-06-07
申请人: 大连理工大学
摘要: 本发明属于商品推荐技术领域,公开了一种基于图像编码的大规模多目标优化的商品推荐方法。本发明首先为用户依概率获取推荐商品的数据集,然后基于商品图像对商品进行编码,接着构建基于推荐准确率与商品多样性的目标函数,之后基于非支配排序与拥挤距离的方法生成初始种群,执行基于变量统计划分的模因进化系统以优化种群,最后依据编码相似度对用户进行推荐。本发明采用了基于图像特征建模的大规模多目标优化算法进行优化,依据优化结果从推荐商品中选择相似特征的物品进行推荐,有助于提高多样化商品的推荐准确率。
-
公开(公告)号:CN110535687B
公开(公告)日:2021-06-04
申请号:CN201910691990.0
申请日:2019-07-30
申请人: 大连理工大学
摘要: 一种基于车联网环境下轻量级区块链的协同缓存方法,属于车联网领域。轻量级区块链架构应用于车联网环境,底层车辆层承担轻量级节点角色,向中间层汇报行车数据、向中间层请求车联网数据并对数据进行校验;中间路侧节点层承担全节点角色,保存区块链数据、为底层车辆提供请求数据服务、向云服务器汇报车联网数据,且利用多路侧节点协同缓存区块链数据;顶层云服务层承担全节点角色,保存区块链数据、为中间路侧节点层提供服务、参与中间路侧节点层协同缓存初始化过程。该方法解决了数据安全问题并提供了轻便的数据校验方式,通过多路侧节点之间的协同缓存实现路侧节点存储资源的最大化利用,降低了路侧节点与车辆通信的延迟。
-
公开(公告)号:CN108829677B
公开(公告)日:2021-05-07
申请号:CN201810602775.4
申请日:2018-06-05
申请人: 大连理工大学
IPC分类号: G06F40/258 , G06N3/04
摘要: 本发明属于计算机视觉与自然语言处理的交叉技术领域,提出了一种基于多模态注意力的图像标题自动生成方法,用以解决传统的基于神经网络的方法在预测单词过程中视觉特征和语言特征的对齐问题以及忽略句子特征的问题,提高了模型的收敛速度与图像标题的质量。本方法首先利用卷积神经网络自动地对图像区域进行特征提取;然后利用带视觉注意力的LSTM实现了句子特征的提取;最后设计了一种带多模态注意力(视觉注意力和隐变量注意力)的LSTM产生最终的图像标题。实验证明所提方法在MS COCO等基准数据集上取得了很好的结果。
-
公开(公告)号:CN112365048A
公开(公告)日:2021-02-12
申请号:CN202011243637.5
申请日:2020-11-09
申请人: 大连理工大学
摘要: 本发明属于人工智能领域,更具体地,涉及一种基于对手行为预测的无人车侦察方法,用以实现无人车集群在复杂环境中的侦察能够更智能地应对各种事件的发生,解决复杂环境中无人车侦察时,在遇到对手的情况下通过预测模型预测对手行为从而躲避抓捕的问题。本发明通过流算法和多臂赌博机算法为无人车在众多的对手候选模型中挑选最适应当前状况的对手候选模型,利用所选择的对手候选模型进行对手行为预测;同时该算法考虑到内存的限制,在任何时刻只处理候选模型集合的一小部分,实时动态地选择候选模型子集。
-
-
-
-
-
-
-
-
-