一种隐私保护的神经网络预测系统

    公开(公告)号:CN115065463A

    公开(公告)日:2022-09-16

    申请号:CN202210656199.8

    申请日:2022-06-10

    Abstract: 本发明公开了一种隐私保护的神经网络预测系统,属于信息安全技术领域。本发明包括客户端、服务端和第三方;在神经网络模型预测的离线阶段,客户端、服务端和第三方通过协商完成模型参数的分享;在线预测阶段,客户端将输入数据的分享值发送给服务端;客户端和服务端利用安全计算协议共同执行具有隐私保护的神经网络预测,服务端将得到的预测结果的分享返回给客户端,客户端重构得到预测结果。在通信方面,本发明仅需一轮通信交互,且降低了现有方案的通信开销数据量,以使得本发明的通信效率显著提高,本发明中所有的计算都是基于环而不是域。本发明还重新定制了离线阶段的协议,不仅提高了离线阶段的效率而且仅需轻量级的秘密分享操作。

    分布式梯度提升决策树实现全面隐私保护的方法

    公开(公告)号:CN115021900A

    公开(公告)日:2022-09-06

    申请号:CN202210511251.0

    申请日:2022-05-11

    Abstract: 本发明提出一种分布式梯度提升决策树实现全面隐私保护的方法,它使用差分隐私DP和全同态加密FHE来实现全面的隐私保护。在训练阶段,数据所有者向不受信任的服务器发送受DP保护的训练树,而不是加密数据。在预测阶段,使用FHE将用户的查询数据和预测结果隐藏在服务器中。为了进一步提高预测效率,该框架提出了一个对FHE友好的多项式近似计算,这样就可以有效地实现开销巨大的比较操作。与目前的隐私保护工作相比,该框架实现了低运行时间和与非隐私保护方案相当的通信开销,同时仅有一小部分的性能损失。

    一种在深度学习下支持训练集成员隐私保护的方法

    公开(公告)号:CN112765662B

    公开(公告)日:2022-06-03

    申请号:CN202110093713.7

    申请日:2021-01-22

    Abstract: 本发明公开了一种在深度学习下支持训练集成员隐私保护的方法,属于深度学习隐私保护技术领域。本发明基于数据混合技术方法的处理机制,采用增强混淆训练混合了训练数据样本与多元随机化设置,并在记忆训练过程中设置了一个额外的混合项,即记忆残留项,并扩大记忆残留项以增强对成员推理攻击的防御能力。通过该混合操作可以防止分类器记住样本数据,因此可以有效地抵抗成员推理攻击。本发明可以阻止模型与它的训练数据过度拟合,提高了目标模型的鲁棒性;且本发明不需要攻击者的先验知识,与现有技术相比,消耗的额外计算资源少;能有效抵御基于模型和度量攻击的成员推理攻击。

    一种在深度学习下支持训练集成员隐私保护的方法

    公开(公告)号:CN112765662A

    公开(公告)日:2021-05-07

    申请号:CN202110093713.7

    申请日:2021-01-22

    Abstract: 本发明公开了一种在深度学习下支持训练集成员隐私保护的方法,属于深度学习隐私保护技术领域。本发明基于数据混合技术方法的处理机制,采用增强混淆训练混合了训练数据样本与多元随机化设置,并在记忆训练过程中设置了一个额外的混合项,即记忆残留项,并扩大记忆残留项以增强对成员推理攻击的防御能力。通过该混合操作可以防止分类器记住样本数据,因此可以有效地抵抗成员推理攻击。本发明可以阻止模型与它的训练数据过度拟合,提高了目标模型的鲁棒性;且本发明不需要攻击者的先验知识,与现有技术相比,消耗的额外计算资源少;能有效抵御基于模型和度量攻击的成员推理攻击。

    一种基于向量同态加密的隐私保护的线性SVM模型训练方法

    公开(公告)号:CN108521326B

    公开(公告)日:2021-02-19

    申请号:CN201810317657.9

    申请日:2018-04-10

    Abstract: 本发明公开了一种基于向量同态加密的隐私保护的线性SVM模型训练方法,属于信息技术安全领域,包括以下步骤:步骤1.使用者采用基于向量的同态加密方案VHE对训练数据集进行加密,并将加密结果发送至服务器;步骤2.服务器对加密结果进行计算,得到密文线性核函数矩阵并将密文线性核函数矩阵返回至使用者;步骤3.使用者对密文线性核函数矩阵进行解密,得到明文线性核函数矩阵并将明文线性核函数矩阵发送至服务器;步骤4.服务器采用密文SMO算法对明文线性核函数矩阵进行训练,并将训练结果返回至使用者。

    在移动群智感知系统中可验证的、具有隐私意识的真相发现的方法

    公开(公告)号:CN112104609A

    公开(公告)日:2020-12-18

    申请号:CN202010842682.6

    申请日:2020-08-20

    Abstract: 本发明提供一种在移动群智感知系统中可验证的、具有隐私意识的真相发现的方法,在现有真值发现的基础上增加了:1)扰动机制,每个用户在将原始的感知数据提交到云之前,首先要独立地干扰其感知数据。另外,要求每个用户对扰动感知数据进行数字签名,以利于服务器随后生成证明。2)验证机制,云服务器执行保护隐私的真相发现算法,将聚合结果以及相应的证明消息返回给任务请求者。任务请求者可以仅通过检查证明消息来验证从云服务器返回的聚合结果的正确性,从而选择接受还是拒绝聚合结果。本发明满足公开可验证、高效率、可扩展、无前缀功能和多个数据提供者需求,在聚合精度、计算和通信开销方面具有优越的性能。

    基于密文图像灰度直方图向量的图像识别方法

    公开(公告)号:CN108830284B

    公开(公告)日:2020-10-27

    申请号:CN201810675670.1

    申请日:2018-06-27

    Abstract: 本发明公开了一种基于密文图像灰度直方图向量的图像识别方法,解决对用户的图像数据进行数据分析和处理泄露用户隐私的问题,属于图像隐私保护技术领域。本发明对待识别密文图像和源密文图像集合分别进行灰度直方图向量提取,得到密文直方图特征向量;获取待识别图像、各源图像两两图像之间的像素比,对各待识别密文图像、各源密文图像的密文直方图特征向量进行处理,得到各密文直方图特征向量;基于密文域整数向量相似性比较方法,将待识别密文图像的密文直方图特征向量与源密文图像集合中的各源密文图像的密文直方图特征向量集合进行比较,找到最终的同源密文图像。本发明用于密文域内的图像识别。

    面向非规则用户的保护隐私的联邦深度学习方法

    公开(公告)号:CN111581663A

    公开(公告)日:2020-08-25

    申请号:CN202010360559.0

    申请日:2020-04-30

    Abstract: 本发明提供一种面向非规则用户的保护隐私的联邦深度学习方法,包括步骤:1)系统设置步骤;2)迭代初始化步骤;3)更新加密的用户的可靠性;4)更新加密的汇总信息:服务器利用更新得到的加密的用户的可靠性信息为汇总结果的权重来更新各梯度的加密的汇总结果使得可靠性越低的用户对汇总结果的影响越小。本发明保护所有用户相关信息的隐私,并且减少用户在训练过程中因使用低质量数据的影响,同时确保用户相关信息的真实性。由服务器完成大部分计算,对于计算能力有限的终端用户来说非常友好,且对用户在整个训练过程中由于各种不可预知的原因而中途退出也具有鲁棒性。

    一种基于隐私保护技术的联合深度学习训练方法

    公开(公告)号:CN109684855B

    公开(公告)日:2020-07-10

    申请号:CN201811540698.0

    申请日:2018-12-17

    Abstract: 本发明属于人工智能技术领域,涉及一种基于隐私保护技术的联合深度学习训练方法。本发明实现了一种基于隐私保护技术的高效联合深度学习训练方法。本发明中,各个参与方首先在私有数据集上训练本地模型获得本地梯度,再将本地梯度进行拉普拉斯噪音扰动,并加密后发送至云服务器;云服务器将接收到的所有本地梯度与上一轮的密文参数进行聚合操作,并广播产生的密文参数;最终,参与方解密接收到密文参数,并更新本地模型从而进行后续的训练。本发明结合同态加密方案和差分隐私技术,提出了安全高效的深度学习训练方法,保证训练模型的精确性,同时防止服务器推断模型参数和训练数据隐私以及内部攻击获取私密信息。

Patent Agency Ranking