一种基于关键字词频特征的多模式匹配方法

    公开(公告)号:CN105373601A

    公开(公告)日:2016-03-02

    申请号:CN201510755911.X

    申请日:2015-11-09

    CPC classification number: G06F16/245 G06F21/55

    Abstract: 本发明提供一种基于关键字词频特征的多模式匹配方法,首先从已知的信息数据库中提取关键字并统计出现频率作为其词频信息,其次采用构造含有关键字词频信息的二叉树完成其中的模式串匹配,在字符匹配过程中若出现字符不相等,则与该不匹配字符所在节点的兄弟节点所含字符进行匹配。其利用信息来源的模式的关键字词频信息构造基于字典树的二叉树完成其中的模式串的匹配,并与AC算法进行了比较。传统的AC算法需要维护三张表,并且在模式匹配过程中会频繁访问这三张表;本发明的一种基于关键字词频特征的多模式匹配方法更多的利用了模式本身的词频信息,并不需要维护过多的信息,这就大大减少了系统的内存消耗。

    一种基于文件序列化的自动机远程分发和初始化方法

    公开(公告)号:CN105302851A

    公开(公告)日:2016-02-03

    申请号:CN201510572332.1

    申请日:2015-09-10

    CPC classification number: G06F17/30194

    Abstract: 本发明提供一种基于文件序列化的自动机远程分发和初始化方法,将位于内存的自动机序列化成本地文件,然后将序列化后的文件进行分发和快速部署,以替代原有的基于规则和特征的分发和部署方式。该方法包括步骤:S1.配置后端服务器,将特征和规则进行初始化生成自动机;S2.在所述后端服务器上将自动机序列化到本地,以文件形式存储;S3.配置分发网络和n台处理机,所述后端服务器将文件形式存在的自动机通过分发网络发送给所有需要进行匹配处理的处理机;S4.每台处理机都接收文件形式存在的自动机,并初始化到内存;S5.处理机根据新生成自动机进行特征的匹配和检测处理。

    一种基于神经网络的僵尸网络态势预测方法和预测系统

    公开(公告)号:CN115442084A

    公开(公告)日:2022-12-06

    申请号:CN202210966921.8

    申请日:2022-08-11

    Abstract: 本发明公开了一种基于神经网络的僵尸网络态势预测方法和预测系统:S1、获得基础僵尸感染流量数据,划分为训练集、验证集和测试集;S2、构建僵尸网络感染预测框架;S3、使用训练集对僵尸网络感染预测框架进行训练,得到预训练的僵尸网络感染预测框架;S4、使用验证集进行迭代验证,得到僵尸网络感染预测框架;S5、使用测试集进行测试,若不符合则返回执行步骤S3,输出符合要求的僵尸网络感染预测框架;S6、使用符合预测要求的僵尸网络感染预测框对僵尸网络规模作出预测。本发明解决了现有僵尸网络感染过程中传播和演进特征的全面建模和僵尸网络规模预测框架构建问题,在僵尸网络未来态势规模的预测方面有较高的准确率。

Patent Agency Ranking