-
公开(公告)号:CN114492387A
公开(公告)日:2022-05-13
申请号:CN202210401179.6
申请日:2022-04-18
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F40/211 , G06F40/284 , G06F40/237 , G06N20/00
Abstract: 本发明公开一种基于句法结构的领域自适应方面术语抽取方法及系统,包括将源领域和目标领域中词的词性和句法依赖关系作为句法结构信息;计算源领域方面术语的平均词性特征和平均句法依赖关系特征并作为方面术语的平均句法结构特征;根据句法结构信息计算源领域和目标领域中每个词和平均句法结构特征的相似度;对基于Transformer的预训练模型进行基于句法结构相似度的再预训练;基于掩码语言模型MLM构建方面术语抽取模型并进行训练,训练过程中对术语抽取模型的交叉熵损失函数进行加权。本发明能学习到词语级领域不变表征,在细粒度的文本抽取任务中能取得不错的成效。
-
公开(公告)号:CN113553610B
公开(公告)日:2021-12-31
申请号:CN202111103182.1
申请日:2021-09-22
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于同态加密和可信硬件的多方隐私保护机器学习方法,包括:将私钥sk发送给各个数据方和可信硬件R;服务器S整合各个数据方上传的密文数据得到密文数据集;服务器S在密文数据集的基础上,将普通机器学习算法中的线性运算替换为同态加法和同态乘法,在密文状态下进行机器学习建模;服务器S在完成密文下的机器学习建模后,将加密的模型密文下发给各个数据方;各个数据方利用私钥解密模型密文,得到由各个数据方的数据D训练得到的模型。本发明利用全同态加密的性质、以及依靠可信硬件实现的模拟自举和执行激活函数功能,能够获得与对未加密数据进行机器学习训练的模型一致的准确率。
-
公开(公告)号:CN111260039B
公开(公告)日:2020-08-07
申请号:CN202010369831.1
申请日:2020-05-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种基于辅助任务学习的视频游戏决策方法,包括以下步骤:S1、构建神经网格模型;S2、启动多进程视频游戏环境;S3、判断是否运行了指定轮次,如果否,则进入步骤S4,如果是,则进入步骤S6;S4、获取游戏经验,更新经验池;S5、将经验输入到神经网格模型,更新神经网格模型参数,返回步骤S3;S6、保存神经网格模型;S7、在视频游戏里利用神经网格模型决策;S8、结束。本发明的有益效果是:可以更准确地估计三维场景中的状态价值以及引起状态改变的智能体动作。
-
公开(公告)号:CN111260039A
公开(公告)日:2020-06-09
申请号:CN202010369831.1
申请日:2020-05-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种基于辅助任务学习的视频游戏决策方法,包括以下步骤:S1、构建神经网格模型;S2、启动多进程视频游戏环境;S3、判断是否运行了指定轮次,如果否,则进入步骤S4,如果是,则进入步骤S6;S4、获取游戏经验,更新经验池;S5、将经验输入到神经网格模型,更新神经网格模型参数,返回步骤S3;S6、保存神经网格模型;S7、在视频游戏里利用神经网格模型决策;S8、结束。本发明的有益效果是:可以更准确地估计三维场景中的状态价值以及引起状态改变的智能体动作。
-
公开(公告)号:CN118747507B
公开(公告)日:2025-02-11
申请号:CN202410860737.4
申请日:2024-06-28
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于参数高效模块和多教师知识蒸馏的知识蒸馏方法,所述方法包括:获取下游任务数据集,根据预先构建的参数高效性多教师模型生成多个子教师模型,对每个子教师模型进行微调,得到多个微调子教师模型;根据下游任务数据集对待训练的学生模型进行训练,根据下游任务数据集和多个微调子教师模型生成该次训练的监督信号,根据监督信号和学生模型在该次训练过程中得到的训练结果,更新参数,当达到预设训练条件时,得到并输出训练完成的学生模型;获取目标处理数据,将目标处理数据输入到训练完成的学生模型,输出目标结果。本发明可以在训练学生模型时兼顾效率和准确率,从而通过训练好的学生模型生成准确的目标结果。
-
公开(公告)号:CN119338013A
公开(公告)日:2025-01-21
申请号:CN202411887056.3
申请日:2024-12-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N5/04 , G06V10/774
Abstract: 本发明涉及机器学习技术领域,公开了一种多模态模型视觉感知能力探测方法及终端,所述方法包括:获取多张检测图像,检测每张所述检测图像之中包含的对象;针对每张所述检测图像,均根据包含的对象构建正向提示答案对和负向提示答案对,以构成探测数据集;获取待探测模型,根据所述探测数据集探测所述待探测模型的性能,输出探测结果。本发明通过针对每个图像构建正向提示答案对和负向提示答案对,不仅简化了问题的构造,同时也要求模型在理解图像内容及其语境时不能仅依赖随机猜测,迫使模型需要正确理解图案和问题才能得到较好的探测结果,有效解决了在进行探测时,对部分模型无法准确的衡量模型的能力的问题。
-
公开(公告)号:CN118747507A
公开(公告)日:2024-10-08
申请号:CN202410860737.4
申请日:2024-06-28
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于参数高效模块和多教师知识蒸馏的知识蒸馏方法,所述方法包括:获取下游任务数据集,根据预先构建的参数高效性多教师模型生成多个子教师模型,对每个子教师模型进行微调,得到多个微调子教师模型;根据下游任务数据集对待训练的学生模型进行训练,根据下游任务数据集和多个微调子教师模型生成该次训练的监督信号,根据监督信号和学生模型在该次训练过程中得到的训练结果,更新参数,当达到预设训练条件时,得到并输出训练完成的学生模型;获取目标处理数据,将目标处理数据输入到训练完成的学生模型,输出目标结果。本发明可以在训练学生模型时兼顾效率和准确率,从而通过训练好的学生模型生成准确的目标结果。
-
公开(公告)号:CN117743869B
公开(公告)日:2024-05-17
申请号:CN202410179740.X
申请日:2024-02-18
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F18/22 , G06F18/213 , G06N3/0464 , G06N3/0442 , G06N3/045 , G06N3/08
Abstract: 本发明公开了一种内容发现方法、系统、终端及存储介质,其中,所述方法包括:获取目标品牌信息和目标用户内容生成信息;将视频内容信息输入到视频编码模型中得到视频特征向量,将文本内容信息输入到文本编码模型中得到文本特征向量,将目标品牌信息输入到品牌编码模型中得到品牌语义;采用预先训练完成的得分函数生成目标用户内容生成信息与目标品牌信息的相似度;获取相似度,根据预设的选取阈值从所有的目标用户内容生成信息中选取目标内容信息。本发明通过所述方法,解决了采用单模态的内容发现方法时存在着由于仅利用了图像资料而忽略了文本、话题标签等多模态信息或只利用神经网络提取图像特征而无法利用视频中语义信息的问题。
-
公开(公告)号:CN115330398A
公开(公告)日:2022-11-11
申请号:CN202211264844.8
申请日:2022-10-17
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于强化学习的量化模型训练方法、系统、终端及介质,能够根据交易环境数据动态生成交易策略和交易策略的价值数据从而扩展并更新蒙特卡洛树,再根据蒙特卡洛树搜索路径评估量化目标的完成情况,将评估结果作为奖励值反向更新训练量化模型,训练后的量化模型能够根据交易环境数据动态生成交易策略。与现有技术相比,不用人为设定奖励值,而是通过蒙特卡洛树来自动生成奖励值以更新量化模型,使得量化模型优化效果好、鲁棒性高。
-
公开(公告)号:CN111291890B
公开(公告)日:2021-01-01
申请号:CN202010399728.1
申请日:2020-05-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种博弈策略优化方法、系统及存储介质,该博弈策略优化方法包括建立基于最大熵的策略递度算法步骤和多智能体最优反应策略求解步骤。本发明的有益效果是:本发明采用中心化训练和分散式执行的方式,提高动作估值网络的准确性,同时引入了全局基线奖励来更准确地衡量智能体的动作收益,以此来解决人博弈中的信用分配问题。同时引入了最大熵方法来进行策略评估,平衡了策略优化过程中的探索与利用。
-
-
-
-
-
-
-
-
-