-
公开(公告)号:CN116801435A
公开(公告)日:2023-09-22
申请号:CN202310757593.5
申请日:2023-06-26
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
Abstract: 本发明涉及高温加热设备技术领域,具体公开一种快速升温的高温波导,包括高温波导腔,高温波导腔的两端均可拆卸连接有长波导,高温波导腔与长波导同轴设置;高温波导腔内设置有感应加热线圈,高温波导腔外侧设置有感应加热炉,感应加热线圈与感应加热炉串联;高温波导腔外侧套设有屏蔽保护套,高温波导腔上安装有热电偶,高温波导腔的外侧设置有控制计算机,感应加热炉、热电偶均与控制计算机电性连接;长波导远离高温波导腔的一端设置有降温组件。本发明通过电磁感应在高温波导腔中形成涡流,可以快速加热高温波导腔和其中的测试样品,并且可以保持样品处于高温状态,有助于进行波导法测试,设备简便容易操作,可以缩短测试所需时长。
-
公开(公告)号:CN114455630B
公开(公告)日:2023-06-06
申请号:CN202210185659.3
申请日:2022-02-28
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
IPC: C01G19/02 , C01B32/184 , H05K9/00 , C09K3/00
Abstract: 本发明公开了一种多频段复合电磁波吸收材料及其制备方法和应用,涉及纳米材料技术领域。多频段复合电磁波吸收材料的原料包括含有氧空位的二氧化锡和还原氧化石墨烯;还原氧化石墨烯与含有氧空位的二氧化锡的质量比为20‑30:1。本发明采用含有丰富氧空位的SnO2纳米球型颗粒来改善复合电磁波吸收材料的阻抗匹配,并且引入丰富界面(氧空位缺陷)用以提高其电导损耗和极化损耗。本发明制备工艺重复性好,成本低,环境友好,清洁无毒,易于大规模生产。
-
公开(公告)号:CN112430450B
公开(公告)日:2022-10-14
申请号:CN202011254660.4
申请日:2020-11-11
Applicant: 哈尔滨工业大学(威海) , 大连海关后勤管理中心
IPC: C09K3/00 , C01B32/194 , C01B32/21
Abstract: 本发明涉及一种改性石墨(烯)纳米片复合粉体及制备方法。将一定量石墨(烯)纳米片浸泡在硝酸溶液并机械搅拌,之后将石墨(烯)纳米片冲洗取后与有机配体、钴盐和去离子水进行混合,并在超声震荡与机械搅拌共同作用下使石墨(烯)纳米片均匀分散到溶液中形成浆料,将所得浆料倒入反应釜中,在一定条件下反应,Co‑MOFs(钴金属有机框架配合物)在此过程中会附着到石墨(烯)纳米片的表面。反应结束后取出反应釜,待反应釜自然冷却到室温后取出反应后的Co‑MOFs改性的石墨(烯)复合粉体,在真空干燥箱中烘干即可获得石墨(烯)纳米片表面复合含有Co‑MOFs颗粒的复合材料粉体。
-
公开(公告)号:CN114937873A
公开(公告)日:2022-08-23
申请号:CN202210619373.1
申请日:2022-06-01
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
Abstract: 本发明目的在于提供一种新型C波段复合电磁吸波材料的合成方法,属于纳米材料技术领域,具体涉及一种具有超高吸波性能的低频吸波材料(Cu@Sn/rGO)的制备,包括如下步骤:采用溶胶‑凝胶和硬模板法结合的方式制备多孔二氧化锡材料,然后采用化学镀工艺成功沉积铜层,最终经过水热过程合成新型C波段复合电磁吸波材料。本发明利用Cu@Sn微球成功的调节了复合材料的阻抗匹配,并且引入了丰富界面使得其极化损耗有较大的提高。最终,Cu@Sn/rGO复合材料在C波段拥有较好的微波吸收性能,当吸收剂的填充量为5 wt%时,最小的反射损耗值为‑49.19 dB(6.08 GHz),并且有效吸波带宽(RL
-
公开(公告)号:CN112176719B
公开(公告)日:2022-07-26
申请号:CN202011073021.8
申请日:2020-10-09
Applicant: 哈尔滨工业大学(威海)
IPC: D06M11/77 , D06M11/38 , D06M11/64 , D06M101/40
Abstract: 本发明C/SiC壳核结构复合纤维制备方法,包括如下步骤:步骤A、原料准备:对碳纤维原料预处理,获得分散性良好、表面活性基团增加的碳纤维Ⅰ;混合熔盐原料获得混合物熔盐;由硅溶胶、炭黑和硅烷偶联剂经混合、干燥、破碎获得干凝胶和炭黑的混合粉体;步骤B、成型:将混合物熔盐与混合粉体混合获得包埋料,将碳纤维Ⅰ处于包埋料包埋下进行烧结、冷却、分离后获得C/SiC壳核结构复合纤维。本发明的制备方法采用熔盐熔解析出法,在较低温度下制备出表面SiC纳米结构壳层的C/SiC复合纤维,具有良好的壳核结构,具有良好的拉伸强度、弹性模量和吸波性能。
-
公开(公告)号:CN109264678B
公开(公告)日:2022-04-22
申请号:CN201811240967.1
申请日:2018-10-24
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
IPC: C01B21/072
Abstract: 本发明提出一种AlN纳米线的制备方法,包括步骤1、混料:将Ti粉、Al粉和C粉进行混合;步骤2、研磨:在球磨罐中加入研磨球,将步骤1所得原料放入球磨罐中,在球磨罐中倒入酒精直至将原料完全盖住,把球磨罐放入球磨机中固定,湿磨8h~12h;步骤3、烘干:将研磨后的物质在水浴环境下进行烘干,烘干温度为50℃~60℃;步骤4、过筛:将烘干后的物质进行过筛,以将研磨球与原料进行分离;步骤5、烧结与取料:将步骤4所得的原料在氮气环境下进行烧结,烧结温度达到1300℃或以上时,保持该温度0.5h~4h,通过气相沉积法制备AlN纳米线,当温度下降后,即可取出烧结产物,即AlN纳米线。通过上述制备方法制备的纳米线为AlN单晶,其直径范围在100‑200 nm,长度范围以5‑10μm居多。
-
公开(公告)号:CN111112601B
公开(公告)日:2021-10-01
申请号:CN201811296330.4
申请日:2018-11-01
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种耐高温铁磁性吸波剂及其制备方法与在耐高温铁磁性吸波材料制备中的应用,涉及适用于耐高温电磁波吸收与防护复合材料,技术方案为:配置乙醇水溶液;制备改性铁磁性粉末;包覆高温介电层;过滤,烘干,得到耐高温铁磁性吸波剂粉末。取耐高温铁磁性吸波剂与微晶玻璃粉末混合均匀,得到混合粉末;放入模具中,加压;惰性气体保护下,升温烧结,降温后得到耐高温铁磁性吸波材料。本发明采用高温介电层包覆的铁磁性吸波剂和微晶玻璃的吸波基体制备吸波材料,具有界面结合性好,烧结温度低和不破坏铁磁性粉末形貌等特点。
-
公开(公告)号:CN109179420B
公开(公告)日:2021-09-28
申请号:CN201811240955.9
申请日:2018-10-24
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
IPC: C01B32/991 , B82Y30/00 , B82Y40/00
Abstract: 本发明提出一种B4C纳米带的制备方法,包括步骤1、混料:将聚氨硼烷和聚碳硅烷均匀分散到四氢呋喃中,得到混合物;步骤2、干燥:将步骤1所得的混合物进行烘干,烘干温度为50℃~60℃;步骤3、研磨:将干燥后的混合物研磨成前驱体粉末;步骤4、烧结与取料:将前驱体粉末在保护气体环境下进行烧结,烧结温度达到1400℃时,在保护气体环境下保持该温度0.5h~1.5h,通过气相沉积法制备B4C纳米带,之后当温度下降后,即得到B4C纳米带。通过上述制备方法制得的纳米带为具有均匀宽度和厚度的单晶B4C纳米带,上述制备方法能够在简化工艺流程、缩短制备时间的前提下,使B4C纳米带仍保持较高的纯度和转化率,使生产成本显著降低,具有较为广阔的应用前景。
-
公开(公告)号:CN113277567A
公开(公告)日:2021-08-20
申请号:CN202110667437.0
申请日:2021-06-16
Applicant: 哈尔滨工业大学
Abstract: 一种介观有序排布且被碳包覆的四氧化三铁纳米复合材料的制备方法及应用,本发明涉及电磁波吸收材料的制备及应用领域。本发明要解决传统铁氧体材料吸收强度弱、吸收频段窄和吸收范围处于高频段的技术问题。制备方法:一、制备油酸铁;二、制备油酸包裹四氧化三铁的前驱体;三、制备介观有序排布且被碳包覆的四氧化三铁纳米复合材料。本发明通过碳层连接的四氧化三铁纳米颗粒介观有序化的结构设计,实现了复合物对S、C和X波段的低宽频吸收。所述一种介观有序排布且被碳包覆的四氧化三铁纳米复合材料作为电磁波吸收材料用于S、C和X波段的微波吸收。
-
公开(公告)号:CN110423494B
公开(公告)日:2021-06-22
申请号:CN201910545480.2
申请日:2019-06-22
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
Abstract: 本发明涉及一种石墨纳米粉体改性工艺,具体的说涉及一种硅烷类或钛酸酯类偶联剂化合物与石墨纳米片复合粉体的制备方法,其特征在于以硅烷类或钛酸酯类偶联剂化合物通过鼓泡式形成偶联剂气氛,在石墨纳米片制备过程中,高速高能量作用,促进偶联剂分子与石墨纳米片相互作用,在石墨纳米片表面附着硅烷类或钛酸酯类化合物,形成石墨纳米片的改性粉体。对照现有技术,本发明技术简单,石墨纳米片的表面附着偶联剂化合物改性的复合粉体,在用于涂料、油墨等多种不同产品时,增强了石墨纳米片粉体在其中的分散性。
-
-
-
-
-
-
-
-
-