-
公开(公告)号:CN114581230A
公开(公告)日:2022-06-03
申请号:CN202210044130.X
申请日:2022-01-14
Applicant: 中国科学院计算技术研究所
IPC: G06Q40/04 , G06Q20/40 , G06N20/00 , G06F16/901
Abstract: 本发明提出一种流式图中的洗钱行为检测方法、装置、介质,所述方法包括获取洗钱场景中的资金交易信息作为图数据通过有向图表示;在每一条所述资金流到达时,判断所述发生源账户是否在转出资金后达到资金平衡状态,且所述目标账户是否在转入资金后到达资金平衡状态;分别统计当前时刻时所述发生源账户与目标账户达到资金平衡状态的次数以及从初始时刻到当前时刻最近一次达到资金平衡状态之间累积的资金有效转入次数,作为统计特征输入至异常账户评估模型进行异常评估。该方法能够快速并且准确地检测出不同模式的洗钱行为,并且找到可疑的洗钱账户。
-
公开(公告)号:CN109213583B
公开(公告)日:2022-03-29
申请号:CN201810825619.4
申请日:2018-07-25
Applicant: 中国科学院计算技术研究所
Abstract: 本发明涉及一种基于Linux内核技术通过软硬件协同支持读写性能隔离的I/O调度器,该I/O调度器是在Linux内核的现有I/O调度器中增加了四个单元,即包括有队列分配单元(10)、优先级设置单元(20)、队列延迟时间对比单元(30)和队列深度调节单元(40),同时将Linux内核现有的I/O软件队列(50)和I/O硬件队列(60)中的I/O优先级进行对接;旨在不修改上层应用的前提下,降低应用业务混部带来的性能干扰,即最大程度的做到混部应用的资源隔离。采用本发明设计的I/O调度器处理后能够在数据处理系统中的在线读负载和批量写负载混部,即读写I/O混部的情况下,保持写I/O性能不变的同时,将读I/O的性能提升。
-
公开(公告)号:CN114185885A
公开(公告)日:2022-03-15
申请号:CN202111307991.4
申请日:2021-11-05
Applicant: 中国科学院计算技术研究所
IPC: G06F16/22 , G06F16/2453 , G06F16/2455 , G06F16/2458 , G06F16/901 , G06F16/31 , G06F16/33 , G06F16/51 , G06F16/53
Abstract: 本发明提出一种基于列存数据的流式数据处理方法和系统,包括:获取待处理的列存流式数据及其对应的处理任务,基于时间维度将该流式数据切分为批式数据块,根据预设窗口模式为该批式数据块中每条数据分配窗口序号;将该批式数据块切分为多个中间数据块,每个中间数据块仅包含窗口序号相同的数据,对每个中间数据块的数据进行预聚合计算,产生预聚合中间状态;根据预设的流式数据时间处理模式,从内部存储提取窗口对应窗口序号的预聚合中间状态并执行与其对应的处理任务,输出任务执行结果,作为流式数据处理结果。本发明通过使用列存存储及计算引擎,结合预聚合技术,在保持较低延迟的前提下,提升数据分析场景的吞吐量。
-
公开(公告)号:CN110533162B
公开(公告)日:2022-01-07
申请号:CN201910677639.6
申请日:2019-07-25
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提出一种自动生成深度学习框架间操作映射的方法及系统,包括:根据原深度学习框架和目标深度学习框架间的操作转换规则,抽取框架间操作转换的基本共性,根据基本共性构建转换关系,将转换关系作为基类存储于操作转换的初始描述文件中;获得原深度学习框架下支持的操作集合,遍历操作集合,为每个操作构建继承基类的子类,判断操作集合中操作除了基类中的基本转换规则外是否具有特殊属性,若是则补充特殊属性至子类,构成完备描述文件,否则直接保存子类,构成完备描述文件;将完备描述文件输入至编译器,得到操作转换规则,根据操作转换规则将原深度学习框架下待转换的操作转换为目标深度学习框架下的操作。
-
公开(公告)号:CN113780569A
公开(公告)日:2021-12-10
申请号:CN202110813797.7
申请日:2021-07-19
Applicant: 中国科学院计算技术研究所
IPC: G06N20/00
Abstract: 本发明提出一种基于相似话题的流行度预测方法和系统,基于KSC算法对历史话题的流行度序列聚类,得到话题级别的演化模式,按照待预测话题的观测窗口和预测窗口大小,对各历史话题的流行度序列进行切分得到训练数据的输入和输出,使用各类别下的历史话题的训练数据分别训练全连接网络作为预测模型,充分利用了与待预测话题在流行度演化模式上相似的历史话题的数据,降低了预测误差。基于DTW算法对待预测话题进行分类,使用待预测话题所属类别的模型进行流行度预测,保证预测及时,增强预测的时效性。
-
公开(公告)号:CN113762465A
公开(公告)日:2021-12-07
申请号:CN202110879783.5
申请日:2021-08-02
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种保护图数据的方法,所述图数据包括节点和节点之间的边,所述节点具有分类标签与属性,所述方法包括:步骤100:从图数据中选择关键节点对;步骤200:对所选择的关键节点对进行免疫保护,所述免疫保护包括:保护同一类别下属性高度相似的节点对之间的连边,以及保持不同类下属性相似度低的节点对间没有连边。本发明首次提出面向数据的对抗免疫方法,不需要影响GNN模型的训练过程,也不需要任何优化过程,节省了优化所需的大量算力和时间。对抗免疫直接为关键节点对“接种疫苗”,保护它们免受攻击损害,从而提高整个图的鲁棒性,同时保证了GNN在干净图上的性能。
-
公开(公告)号:CN110321346B
公开(公告)日:2021-09-21
申请号:CN201910450998.8
申请日:2019-05-28
Applicant: 中国科学院计算技术研究所
IPC: G06F16/22
Abstract: 本发明涉及一种字符串散列表实现方法,包括:根据字符串长度,将该字符串分发至对应的散列表;其中,该散列表包括数组散列表、数值型散列表和字符型双散列表。本发明使用多种异构散列表存储字符串,针对不同字符串的长度选择合适的散列表;同时针对短字符串,将短字符串划分为固定的几个长度区间,提高内存空间利用率,利用字符串变长的特性,为每种区间的散列槽预留末尾的1字节空间原地存储元数据信息;而针对长字符串,使用二级散列表结构,一级散列表通过仅使用部分前缀值计算字符串散列,减少了散列值的计算量;而二级散列表作为一级散列表的冲突链存储表,解决了一级散列表精简散列计算导致的冲突增大的问题。
-
公开(公告)号:CN113392139A
公开(公告)日:2021-09-14
申请号:CN202110624648.6
申请日:2021-06-04
Applicant: 中国科学院计算技术研究所
IPC: G06F16/2458 , G06F16/901 , G06N3/04 , G06N3/08
Abstract: 本发明提出一种基于关联融合的多元时间序列补全方法和系统,包括:获取数据存在缺失的多元时间序列及其对应的标记矩阵;根据多元时间序列中每个时间点的各个属性,得到属性间的关联系数,以构建图G,图G中节点对应属性,节点间的边对应属性间的属性关联系数;通过将图G和待补全矩阵按位相乘,得到中间矩阵,通过神经网络对中间矩阵进行时序处理,得到多元时间序列中各时间点的隐藏状态;根据各时间点的隐藏状态,计算多元时间序列的时间关联性系数;通过将时间关联性系数和各时间点的隐藏状态按位相乘,得到多元时间序列中各时间点的中间状态;在多元时间序列中,对中间状态采用生成式的非线性变换,得到多元时间序列的重构补全数据。
-
公开(公告)号:CN113190734A
公开(公告)日:2021-07-30
申请号:CN202110461513.2
申请日:2021-04-27
Applicant: 中国科学院计算技术研究所
IPC: G06F16/951 , G06N3/04 , G06N3/08
Abstract: 本发明公开一种基于单平台的网络事件流行度预测方法,包括以下步骤:将网络事件在时序上按照固定时间间隔进行划分以形成多个事件片段,并提取各个事件片段的多个维度特征;分别提取各个事件片段的多个维度特征中的相同维度特征以形成多个维度时序特征,并融合多个维度时序特征得到网络事件的统一特征;根据统一特征预测网络事件的流行度。
-
公开(公告)号:CN110135457B
公开(公告)日:2021-04-06
申请号:CN201910288771.8
申请日:2019-04-11
Applicant: 中国科学院计算技术研究所
Abstract: 本发明涉及一种基于自编码器融合文档信息的事件触发词抽取方法,包括:以未标注自由文本语料生成训练集,训练GRU模型以构建该自编码器;对训练语料进行预处理和标签标注,提取待识别词;以该自编码器获取该待识别词在其所在文档内的文档向量,作为该待识别词的全局特征;以该待识别词的词向量和实体类型分布式表达,作为该待识别词的局部特征;将该全局特征和该局部特征进行向量拼接,获得该待识别词的上下文特征;将该上下文特征输入Bi‑GRU模型进行多分类,以识别该待识别词是否为事件触发词及该待识别词的对应事件类型。
-
-
-
-
-
-
-
-
-