一种具有导引信号发射功能的整流天线

    公开(公告)号:CN107887695A

    公开(公告)日:2018-04-06

    申请号:CN201710891889.0

    申请日:2017-09-27

    Abstract: 本发明公开了一种具有导引信号发射功能的整流天线,包括第一介质板、第二介质板、第三介质板、微波能量接收天线、微波馈电网络、整流电路、导引信号发射天线、接地板和导引馈电网络;第一介质板、第二介质板、接地板、第三介质板叠置,第一介质板上设有微波能量接收天线和微波馈电网络,微波馈电网络分别与微波能量接收天线和整流电路连通,第二介质板上设有导引信号发射天线,第三介质板上设有导引馈电网络,导引馈电网络分别与导引信号发射天线和导引信号发射机连通。本发明通过双频天线阵列、谐波抑制和射频对消,实现了在同一口面上微波接收整流和导引信号发射,弥补了传统天线位于阵列边缘时测角系统复杂,位于阵列中心时传输效率低的缺陷。

    一种基于多层印刷技术的波导及其制备方法

    公开(公告)号:CN104218296B

    公开(公告)日:2017-10-24

    申请号:CN201410453137.2

    申请日:2014-09-05

    Abstract: 本发明涉及一种基于多层印刷技术的波导及制备方法,该波导采用多层平面板作为介质基板组,并对上层和下层平板进行金属涂覆、并在多层平面板组成的介质基板组中设计空腔和布设金属通孔,得到的基片集成金属波导,该波导沿用了SIW的离散接地代替连续接地的方法,在多层印刷结构中实现了准金属波导结构,利用本发明方法设计得到的基片集成金属波导,在忽略辐射损耗时,其传输特性与金属波导一致,且降低了波导加工工艺。

    一种在低质量图像压缩数据中无损隐藏高质量图像的方法

    公开(公告)号:CN107018414A

    公开(公告)日:2017-08-04

    申请号:CN201710292706.3

    申请日:2017-04-28

    Abstract: 本发明一种在低质量图像压缩数据中无损隐藏高质量图像的方法,该方法通过高效率信息隐藏,如相对隐藏容量可达16%‑53%,把高质量的图像(关键目标图像或感兴趣区域图像)无失真地隐藏在分块压缩数据中进行传输,接收端能完全恢复隐藏的高质量图像,也能通过解压缩得到与原图像同质量等级的图像。本发明在不改变数据压缩技术的情况下,提供了一种高性能信息隐藏和基于此方法的高质量数据压缩方法,相当于经过4倍分块压缩,既得到4倍压缩的恢复图像,也得到感兴趣区域高质量图像;既满足了原来用户的压缩需求,也满足了特殊用户对高质量目标图像的无损传输需求。

    一种太赫兹接收前端及其实现方法

    公开(公告)号:CN104378131B

    公开(公告)日:2016-08-24

    申请号:CN201410603786.6

    申请日:2014-10-30

    Abstract: 一种太赫兹接收前端及其实现方法,接收前端包括正交模耦合器OMT、两个波导?微带转换、两个低噪声放大器LNA、两个带通滤波器、两个混频器、本振LO和功分器;正交模耦合器OMT、波导?微带转换和低噪声放大器LNA形成一个一体成型组合体,混频器和功分器形成一个一体成型组合体、本振LO和倍频器形成一个一体成型组合体。通过集成化的设计布局方案,避免了接收前端中各个部件之间的多个相互连接,使产品的集成度得到极大提升。减少了传输的能量损失,为太赫兹频段接收前端的实现提供了有力的技术支撑。同时本发明还提出了该接收前端的实现方法。

    一种太赫兹接收前端及其实现方法

    公开(公告)号:CN104378131A

    公开(公告)日:2015-02-25

    申请号:CN201410603786.6

    申请日:2014-10-30

    Abstract: 一种太赫兹接收前端及其实现方法,接收前端包括正交模耦合器OMT、两个波导-微带转换、两个低噪声放大器LNA、两个带通滤波器、两个混频器、本振LO和功分器;正交模耦合器OMT、波导-微带转换和低噪声放大器LNA形成一个一体成型组合体,混频器和功分器形成一个一体成型组合体、本振LO和倍频器形成一个一体成型组合体。通过集成化的设计布局方案,避免了接收前端中各个部件之间的多个相互连接,使产品的集成度得到极大提升。减少了传输的能量损失,为太赫兹频段接收前端的实现提供了有力的技术支撑。同时本发明还提出了该接收前端的实现方法。

    星载L频段微放电大功率三工器

    公开(公告)号:CN103107388A

    公开(公告)日:2013-05-15

    申请号:CN201310025613.6

    申请日:2013-01-21

    Abstract: 本发明涉及星载L频段微放电大功率三工器,属于电子技术领域。该三工器包括谐振杆和盖板,所述的谐振杆为10个,且之间为并联关系;谐振杆位于盖板上,谐振杆和盖板一体化加工;谐振杆分为三排,其中第一排为三个谐振杆,第二排为四个谐振杆,第三排为三个谐振杆;三排谐振杆的输出端汇集成一路,作为公共输出端进行输出。本发明所涉及的输出三工器体积小、重量轻,微放电功率容量可达500W;其特有的公共杆耦合技术和针对微放电设计的谐振杆调节技术可以应用到其他频段的星载通道、多工器应用中。

    一种基于光频梳的太赫兹天线形面检测系统及方法

    公开(公告)号:CN113932729B

    公开(公告)日:2024-02-09

    申请号:CN202110976446.8

    申请日:2021-08-24

    Abstract: 本发明公开了一种基于光频梳的太赫兹天线形面检测系统及方法,用于实现太赫兹天线形面的高精度快速测量。其中光梳光场生成模块对其中一个光频梳出射的测试光进行空间啁啾,形成多波长的一维测试光场,再经过平移或转动装置形成正交的测试光场。利用该光场的强度、空间位置以及相位间的对应关系,实现太赫兹天线形面的高精度检测。利用与测试光存在微小重复频率差的另一台光频梳,对测试光场进行异步光学采样,再通过高精度的三维结构光场重建实现太赫兹天线形面的复原,不仅为实现天赫兹天线高精度形面检测提供了可靠的依据,也为高增益

    一种太赫兹通信波束回溯装置及方法

    公开(公告)号:CN111817756B

    公开(公告)日:2022-05-24

    申请号:CN202010550561.4

    申请日:2020-06-16

    Abstract: 本申请公开了一种太赫兹通信波束回溯装置及方法,该装置包括:接收天线阵(1)、发射天线阵(2)以及设置于所述接收天线阵(1)与所述发射天线阵(2)之间的至少一个相位共轭机构(3);其中,所述接收天线阵(1),用于接收入射的导频信号,并将所述导频信号发送给所述相位共轭机构(3);所述至少一个相位共轭机构(3),用于将所述导频信号进行变频以及相位共轭处理,得到太赫兹信号,并将所述太赫兹信号发送给所述发射天线(2),所述太赫兹信号与所述导频信号的相位共轭;所述发射天线(2),用于将所述太赫兹信号沿着所述导频信号的路径辐射。本申请解决了现有技术中接收天线和发射天线的对准装置无法适用于星间链路的高速时时通信的技术问题。

    一种基于近场聚焦非阵列天线的微波能量传输系统

    公开(公告)号:CN113629896A

    公开(公告)日:2021-11-09

    申请号:CN202110736006.5

    申请日:2021-06-30

    Abstract: 一种基于近场聚焦非阵列天线的微波能量传输系统,包括:微波发射机、收/发天线系统和微波整流电路;收/发天线系统是一对互为共轭的近场聚焦天线,天线采用椭球反射面形式;根据所述微波能量传输系统所需能量传输效率和所需的传输距离,确定收发天线口径和载波频率;微波发射机实现直流功率到微波功率的转换,发射天线将微波能量发射出去,经自由空间传输后,接收天线接收该微波能量,微波整流电路将微波能量整流转换为直流能量,完成对目标供电。本发明解决传统能量传输方案中依靠增加接收截获面积提高传输效率,能量传输距离等于天线聚焦距离,阵列天线存在馈电网络损耗、结构复杂及成本过高,整流电路直流合成造成的能量损失等问题。

    一种提高同频收发天线隔离度的方法

    公开(公告)号:CN111755822B

    公开(公告)日:2021-07-13

    申请号:CN202010544551.X

    申请日:2020-06-15

    Abstract: 一种提高同频收发天线隔离度的方法,针对同时同频全双工通信等系统对于同频收发天线之间的信号隔离、自干扰抑制问题,首先使收发天线的极化方式正交,并间隔一段距离;再通过在收发天线下方放置背腔结构,背腔结构由双层圆柱形腔和径向金属板组成,可抑制各种极化方式的电磁波沿背腔结构表面传播,以此来压低收发天线的旁瓣降低耦合;最后在收发天线之间放置周期性电磁结构,优化周期性电磁结构的尺寸和间距,调节泄漏信号与反射信号的幅度和相位使其反相对消,进一步提高天线之间的隔离度。该方法可在较大的工作宽带上实现同频收发天线之间的高隔离,解决了传统常规设计中同频隔离困难,自干扰抑制度不够及抑制带宽较窄等问题。

Patent Agency Ranking