-
公开(公告)号:CN109264787B
公开(公告)日:2020-10-30
申请号:CN201811097797.6
申请日:2018-09-20
Applicant: 济南大学
Abstract: 本发明公开了一种ZnFe2O4立方块体结构的制备方法及所得产品,步骤是:将亚铁氰化钾、PVP、酒石酸加入到乙醇和盐酸的混合溶液中,搅拌均匀,然后加热进行反应,反应后收集中间产物;将PDDA、硝酸锌、2‑甲基咪唑和甲醇混合均匀,形成溶液,向该溶液中加入中间产物,然后将溶液进行超声处理;超声后收集样品,将样品进行煅烧,得ZnFe2O4立方块体结构。本发明原料来源广,溶液体系反应过程简便可控,产物的微观结构特殊,物化稳定性好,尺寸可调,产率高,形貌重复性好,在锂离子电池、催化等领域具有潜在的应用价值。
-
公开(公告)号:CN107956000B
公开(公告)日:2019-11-08
申请号:CN201711477540.9
申请日:2017-12-29
Applicant: 济南大学
Abstract: 本发明公开了一种NiO多级中空纤维的合成方法及所得产品,将对苯二胺、酒石酸和二甲基甲酰胺混合,然后向所得混合物中加入乙醇、镍盐和聚乙烯吡咯烷酮,搅拌至透明,得到前驱体纺丝液;将前驱体纺丝液通过静电纺丝法得到前驱体纤维,然后将所得前驱体纤维进行热处理,得到NiO多级中空纤维。本发明通过对前驱体反应体系的设计,搭配合适的静电纺丝参数和热处理制度,采用静电纺丝法一步合成了微观形貌可控的NiO多级中空纤维。本发明原料来源广,静电纺丝工艺参数可调,反应进程可控性高,操作简便,设备简单,产物形貌分散性好、多级结构重复性好,有利于低成本规模化生产,在气敏领域具有潜在的市场应用价值。
-
公开(公告)号:CN108249476B
公开(公告)日:2019-10-11
申请号:CN201810043500.1
申请日:2018-01-17
Applicant: 济南大学
Abstract: 本发明公开了一种SnS2/Mn3O4三维多级结构的合成方法及所得产品,步骤包括:将锡盐、硫代乙酰胺、对苯二胺和无水乙醇混合,得透明溶液,将透明溶液进行溶剂热反应,得SnS2花状自组装体;将SnS2花状自组装体分散于丙三醇和水的混合溶剂中,然后加入PVP、锰盐和乙酸钠,混合均匀,得混合液;将混合液进行溶剂热反应,得产物。本发明通过两步溶剂热反应得到了形貌可控的SnS2/Mn3O4复合材料,本发明SnS2/Mn3O4三维多级结构微观形貌新颖、尺寸可控,反应进程易于调节,产物均匀性好,重复性高,在光催化领域具有较好的应用价值。
-
公开(公告)号:CN107299417B
公开(公告)日:2019-03-15
申请号:CN201710403245.2
申请日:2017-06-01
Applicant: 济南大学
Abstract: 本发明公开了一种WO3/ZnWO4复合微纳米纤维的制备方法,步骤包括:首先以锌盐与二甲基咪唑为原料制备Zif‑8;然后加入聚乙二醇200、甲酰胺配制Zif‑8的Tris‑HCl溶液;再将钨酸溶于氨水中得到溶液;然后将两种溶液缓慢滴加到聚乙烯吡咯烷酮(PVP)溶液中,得到前驱体纺丝液,通过静电纺丝和热处理后,得到最终产品。本发明生产的WO3/ZnWO4复合微纳米纤维,纤维主体是由WO3和ZnWO4纳米颗粒复合而成,表面具有WO3异质相颗粒。本发明将金属有机框架材料(Zif‑8)引入到WO3纤维的合成过程中,制备工艺简便,反应可控性强、操作性好,产物的晶相结构与微观形貌可调,重复性好。本发明得到的WO3/ZnWO4复合微纳米纤维将在气敏、催化等方面显示出重要的市场应用前景。
-
公开(公告)号:CN109264787A
公开(公告)日:2019-01-25
申请号:CN201811097797.6
申请日:2018-09-20
Applicant: 济南大学
CPC classification number: C01G49/0063 , B82Y40/00 , C01P2002/72 , C01P2004/03 , C01P2004/38 , C01P2004/62 , C01P2004/64
Abstract: 本发明公开了一种ZnFe2O4立方块体结构的制备方法及所得产品,步骤是:将亚铁氰化钾、PVP、酒石酸加入到乙醇和盐酸的混合溶液中,搅拌均匀,然后加热进行反应,反应后收集中间产物;将PDDA、硝酸锌、2-甲基咪唑和甲醇混合均匀,形成溶液,向该溶液中加入中间产物,然后将溶液进行超声处理;超声后收集样品,将样品进行煅烧,得ZnFe2O4立方块体结构。本发明原料来源广,溶液体系反应过程简便可控,产物的微观结构特殊,物化稳定性好,尺寸可调,产率高,形貌重复性好,在锂离子电池、催化等领域具有潜在的应用价值。
-
公开(公告)号:CN107956000A
公开(公告)日:2018-04-24
申请号:CN201711477540.9
申请日:2017-12-29
Applicant: 济南大学
Abstract: 本发明公开了一种NiO多级中空纤维的合成方法及所得产品,将对苯二胺、酒石酸和二甲基甲酰胺混合,然后向所得混合物中加入乙醇、镍盐和聚乙烯吡咯烷酮,搅拌至透明,得到前驱体纺丝液;将前驱体纺丝液通过静电纺丝法得到前驱体纤维,然后将所得前驱体纤维进行热处理,得到NiO多级中空纤维。本发明通过对前驱体反应体系的设计,搭配合适的静电纺丝参数和热处理制度,采用静电纺丝法一步合成了微观形貌可控的NiO多级中空纤维。本发明原料来源广,静电纺丝工艺参数可调,反应进程可控性高,操作简便,设备简单,产物形貌分散性好、多级结构重复性好,有利于低成本规模化生产,在气敏领域具有潜在的市场应用价值。
-
公开(公告)号:CN106745311B
公开(公告)日:2018-01-09
申请号:CN201710041890.4
申请日:2017-01-20
Applicant: 济南大学
Abstract: 本发明公开了一种α‑Fe2O3纳米棒的制备方法,步骤为:将三价铁盐、NaHCO3、EDTA‑2Na加入到丙三醇和乙醇的混合溶剂中,搅拌得到透明溶液,将透明溶液进行溶剂热反应,得到无定型前驱体纳米棒,将该前驱体纳米棒进行高温快速烧结处理,得产品。本发明通过控制反应体系成分和含量、溶剂热反应条件、高温烧结程序等参数得到长径比可调的α‑Fe2O3纳米棒,本发明利用模板法合成了α‑Fe2O3一维纳米材料,选用的原料价格低廉,合成过程易于调控,得到的无定型前驱体纳米棒及α‑Fe2O3纳米棒的尺寸及长径比可调,产物微观形貌均匀且重复性好,在超级电容器、锂电池、催化、气敏等领域应用前景大。
-
公开(公告)号:CN107142556A
公开(公告)日:2017-09-08
申请号:CN201710403244.8
申请日:2017-06-01
Applicant: 济南大学
Abstract: 本发明公开了一种SnO2/ZnO复合微纳米纤维的制备方法,首先以锌盐与2‑甲基咪唑制备Zif‑8;然后加入柠檬酸氢二铵、十八胺、乙基纤维素配制成Zif‑8溶液;然后将锡盐和聚乙烯吡咯烷酮配制成锡盐溶液,将其缓慢滴加到Zif‑8溶液中,得到前驱体纺丝液,经静电纺丝与热处理后,得到最终产品。本发明制得的SnO2/ZnO复合微纳米纤维,纤维主体是由SnO2和ZnO纳米颗粒复合而成,表面具有SnO2纳米颗粒。本发明将锌基的金属有机框架材料引入SnO2微纳米纤维中,合成过程简单,反应参数易于设置,得到的产物成分可调。本发明得到的SnO2/ZnO复合微纳米纤维在气敏、光催化等领域具有重要的应用价值。
-
公开(公告)号:CN105668617A
公开(公告)日:2016-06-15
申请号:CN201610054174.5
申请日:2016-01-27
Applicant: 济南大学
IPC: C01G19/02
CPC classification number: C01G19/02 , C01P2002/72 , C01P2002/82 , C01P2004/03 , C01P2004/04 , C01P2004/30 , C01P2004/50 , C01P2004/61
Abstract: 本发明公开了一种静电纺丝制备杨桃状SnO2/C微纳米颗粒的方法及所得产品,包括以下步骤:将PVP、TBAB、液体石蜡和锡盐溶于乙醇和DMF的混合溶剂中,搅拌得透明溶液;将透明溶液通过静电纺丝法得到前驱体纤维,所得前驱体纤维在惰性气体保护下煅烧,得到杨桃状SnO2/C微纳米颗粒。本发明利用简单的静电纺丝技术与惰性气体保护下的热处理过程相结合的方法制备了尺寸可调的杨桃状SnO2/C微纳米颗粒,工艺过程简便,合成条件易于控制,操作性强,产物形貌独特,可控性强,重复性好,颗粒尺寸分布范围窄,粒径可调,适合工业化生产。得到的杨桃状SnO2/C微纳米颗粒在超级电容器、锂离子电池等方面具有潜在的应用价值。
-
公开(公告)号:CN104261478A
公开(公告)日:2015-01-07
申请号:CN201410480565.4
申请日:2014-09-19
Applicant: 济南大学
CPC classification number: C01G45/02 , C01P2002/70 , C01P2004/03 , C01P2004/16 , C01P2004/64
Abstract: 本发明公开了一种Mn3O4纳米线或纳米棒的制备方法,包括以下步骤:将二价锰盐和醋酸钠加入到低级醇中,搅拌得到透明溶液;将上述透明溶液采用溶剂热法制备Mn3O4纳米线或纳米棒;反应后离心分离、洗涤,得Mn3O4纳米线或纳米棒。本发明利用溶剂热法一步合成了Mn3O4纳米线或纳米棒,通过改变反应条件,可以可控的得到所需长径比的Mn3O4纳米线或纳米棒。本发明制备工艺简单、高效、原料成本低廉、生产成本低、对Mn3O4纳米线或纳米棒的大批量工业化生产及其实际应用具有重要意义。所得产物产量高、纯度高、形貌均一、尺寸分布窄,具有较好的磁性,在催化、太阳能电池、重金属离子吸附等方面具有广泛的应用。
-
-
-
-
-
-
-
-
-