-
公开(公告)号:CN109740419B
公开(公告)日:2021-03-02
申请号:CN201811397129.5
申请日:2018-11-22
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所 , 南京三宝科技股份有限公司
Abstract: 本发明公开了一种基于Attention‑LSTM网络的视频行为识别方法。通过光流图序列生成模块对输入的RGB图序列进行变换,得到光流图序列;将光流图序列与原RGB图序列输入时域注意力取帧模块,分别选取两种图序列中非冗余的关键帧;将两种图的关键帧序列输入AlexNet网络特征提取模块,分别提取出两种帧图的时序特征和空间特征,通过特征分权加强模块,对最后一层卷积层输出的特征图执行加重与动作相关性强的特征权重的操作;将两个AlexNet网络特征提取模块输出的特征图输入LSTM网络行为识别模块,分别对两种图片进行识别,并将两种识别结果通过融合模块按比例融合,得到最终的视频行为识别结果。本发明不仅能实现从视频中识别行为的功能,且能提高识别的准确率。
-
公开(公告)号:CN108806243B
公开(公告)日:2020-09-29
申请号:CN201810371782.8
申请日:2018-04-24
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所
Abstract: 本发明公开了一种基于Zynq‑7000的交通流量信息采集终端,属于交通控制系统信号装置的技术领域。该终端以Zynq‑7000芯片为载体,搭建了包含视频图像采集传感器、外部存储器模块、HDMI显示器的架构,使用AXI4总线进行PS模块和PL模块内部互联,设计了加速卷积神经网络计算的IP核,采用MCU驱动AXI4‑VDMA IP核和AXI4‑DMA IP核的通信架构实现了PS模块和PL模块的实时数据交互,将视频图像采集、存储、目标检测、流量统计、显示输出等功能集成单芯片上,集成度高,高速度和低延迟的数字图像处理和数据传输能够满足交通流量统计的实时性要求。
-
公开(公告)号:CN109086879B
公开(公告)日:2020-06-16
申请号:CN201810729915.4
申请日:2018-07-05
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所
Abstract: 本发明公开一种基于FPGA的稠密连接神经网络的实现方法,步骤是:将整个卷积神经网络划分为多个稠密连接块;利用FPGA上的资源设计卷积运算单元,进而设计FPGA端卷积运算模块;设计神经网络整体的数据收发逻辑,包括七个部分:Input Feature Map、Send Buffer、卷积运算模块、Receive Buffer、Output Feature Map、Dense Block Buffer、Max Buffer;根据稠密连接神经网络各层输入输出数据量的大小,设计Input Feature Map、Output Feature Map、Dense Block Buffer所需的存储区域大小,根据Block大小和卷积运算单元的并行度设计Send Buffer、Receive Buffer所需存储区域的大小;根据稠密连接神经网络各层的特点设计其数据收发逻辑。此种方法可在保证算法准确度的前提下降低网络各层宽度,减少参数数量,提高数据传输效率,提升神经网络的运行速度。
-
公开(公告)号:CN110569760A
公开(公告)日:2019-12-13
申请号:CN201910794798.4
申请日:2019-08-27
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所
IPC: G06K9/00
Abstract: 本发明涉及一种基于近红外和远程光电体积描记术的活体检测方法,属于计算、推算、计数的技术领域。该方法:定位待检测对象的面部区域进行人脸识别;对通过人脸识别的对象获取面部的近红外光图像,通过检测近红外光图像获取红外光图像为翻拍自屏幕介质的评分;获取通过屏幕翻拍检测的对象的面部图像序列,利用远程光电体积描记术对待测图像序列进行生命体征信号的提取,辨别待检测对象是否为活体人脸。本发明提高了活体检测的鲁棒性,具备更强的分类和学习能力,能较好地应对三维面具、视频、照片翻拍等表示攻击,区分结果准确率较高。叠加最短周期信号提取生命特征信号的改进型远程光电体积描记术则无需先验知识,能够适应实际使用场景的需求。
-
公开(公告)号:CN109598338A
公开(公告)日:2019-04-09
申请号:CN201811493592.X
申请日:2018-12-07
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所 , 南京三宝科技股份有限公司
Abstract: 本发明公开一种基于FPGA的计算优化的卷积神经网络加速器,包括AXI4总线接口、数据缓存区、预取数据区、结果缓存区、状态控制器及PE阵列;数据缓存区用于缓存通过AXI4总线接口从外部存储器DDR中读取的特征图数据、卷积核数据和索引值;预取数据区用于从特征图子缓存区预取需要并行输入PE阵列的特征图数据;结果缓存区用于缓存每行PE的计算结果;状态控制器用于控制加速器工作状态,实现工作状态间的转换;PE阵列用于读取预取数据区和卷积核子缓存区中的数据进行卷积操作。此种加速器利用参数稀疏性、重复权重数据和激活函数Relu的特性,提前结束冗余计算,减少计算量,并通过减少访存次数来降低能耗。
-
公开(公告)号:CN108805272A
公开(公告)日:2018-11-13
申请号:CN201810413101.X
申请日:2018-05-03
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所
IPC: G06N3/063
CPC classification number: G06N3/063
Abstract: 本发明公开了一种基于FPGA的通用卷积神经网络加速器,包括MCU、AXI4总线接口、地址生成器、状态控制器、特征图缓存区、卷积核缓存区、卷积计算器以及分段式结果缓存区。卷积加速器采用FPGA实现,并包含N个卷积计算子单元,特征图缓存区和卷积核缓存区分别包含N个特征图子缓存区和N个卷积核子缓存区,每一个卷积计算子单元对应配置一个特征图子缓存区和一个卷积核子缓存区。卷积计算器读取特征图缓存区和卷积核缓存区中的数据进行卷积计算,并将相邻卷积计算子单元的计算结果进行多级累加,分段式结果缓存区用于存放卷积计算器输出的各级累加结果。本发明能够支持各种卷积神经网络结构,通用性好,对片上存储资源需求较少,通信开销小。
-
公开(公告)号:CN109598338B
公开(公告)日:2023-05-19
申请号:CN201811493592.X
申请日:2018-12-07
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所 , 南京三宝科技股份有限公司
IPC: G06N3/063 , G06N3/0464
Abstract: 本发明公开一种基于FPGA的计算优化的卷积神经网络加速器,包括AXI4总线接口、数据缓存区、预取数据区、结果缓存区、状态控制器及PE阵列;数据缓存区用于缓存通过AXI4总线接口从外部存储器DDR中读取的特征图数据、卷积核数据和索引值;预取数据区用于从特征图子缓存区预取需要并行输入PE阵列的特征图数据;结果缓存区用于缓存每行PE的计算结果;状态控制器用于控制加速器工作状态,实现工作状态间的转换;PE阵列用于读取预取数据区和卷积核子缓存区中的数据进行卷积操作。此种加速器利用参数稀疏性、重复权重数据和激活函数Relu的特性,提前结束冗余计算,减少计算量,并通过减少访存次数来降低能耗。
-
公开(公告)号:CN107766812B
公开(公告)日:2021-06-29
申请号:CN201710945484.0
申请日:2017-10-12
Applicant: 东南大学—无锡集成电路技术研究所 , 东南大学
IPC: G06K9/00
Abstract: 本发明公开了一种基于MiZ702N的实时人脸检测识别系统,包括图像传感器、MiZ702N开发板、VGA显示器;MiZ702N开发板包括视频输入模块、存储器、CPU、神经网络加速器、视频输出模块;图像传感器采集视频信息并将信息发送到视频输入模块,之后将单帧图像存储到存储器中;CPU从存储器获取图像信息,进行图像预处理后将预处理后的图像存储到存储器中;神经网络加速器从存储器中获取预处理后的图像进行人脸检测运算和人脸识别运算,然后将运算结果返回存储器;CPU根据运算结果处理图像;视频输出模块从存储器中获取经CPU处理后的图像,最后输出数据到VGA显示器。本发明具有内部总线数据传输速度快,神经网络并行度高,实时准确检测识别人脸的优点。
-
公开(公告)号:CN109919063A
公开(公告)日:2019-06-21
申请号:CN201910145364.1
申请日:2019-02-27
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所
Abstract: 本发明公开一种基于纹理分析的活体人脸检测系统,原始图像ROM模块预存原始图像,产生从0开始依次累加的地址数据,生成原始图像的像素流;颜色空间转换模块将RGB图像分别转换成Y、Cb、Cr和H、S、V六种像素流;LBP值计算模块每接收一个像素数据后计算对应的LBP值并输出该LBP值;直方图统计模块依次接收LBP值,进行直方图统计并生成相应的LBP直方图,该直方图为人脸图片的特征向量;SVM模块计算特征向量与外部输入的所有训练图片的支持向量的距离,根据计算结果标记出真假人脸的识别标签。此种系统的硬件实现采用FPGA作为主要的运算器件,以实现在大数目的人脸训练图片条件下提高活体人脸检测速度。本发明还公开一种基于纹理分析的活体人脸检测方法。
-
公开(公告)号:CN109086879A
公开(公告)日:2018-12-25
申请号:CN201810729915.4
申请日:2018-07-05
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所
Abstract: 本发明公开一种基于FPGA的稠密连接神经网络的实现方法,步骤是:将整个卷积神经网络划分为多个稠密连接块;利用FPGA上的资源设计卷积运算单元,进而设计FPGA端卷积运算模块;设计神经网络整体的数据收发逻辑,包括七个部分:Input Feature Map、Send Buffer、卷积运算模块、Receive Buffer、Output Feature Map、Dense Block Buffer、Max Buffer;根据稠密连接神经网络各层输入输出数据量的大小,设计Input Feature Map、Output Feature Map、Dense Block Buffer所需的存储区域大小,根据Block大小和卷积运算单元的并行度设计Send Buffer、Receive Buffer所需存储区域的大小;根据稠密连接神经网络各层的特点设计其数据收发逻辑。此种方法可在保证算法准确度的前提下降低网络各层宽度,减少参数数量,提高数据传输效率,提升神经网络的运行速度。
-
-
-
-
-
-
-
-
-