一种无乘法器的基于CORDIC算法的线性调频信号生成方法

    公开(公告)号:CN109521992B

    公开(公告)日:2022-11-22

    申请号:CN201811353754.X

    申请日:2018-11-14

    Abstract: 本发明公开了一种无乘法器的基于CORDIC算法的线性调频信号生成方法,1)生成无乘法器的线性调频信号离散相位:利用两级累加结构代替多个乘法器,生成线性调频信号离散相位;2)将步骤1)生成的线性调频信号离散相位输入到CORDIC算法对应的输入区间中;3)对输入CORDIC算法中的相位进行改进的CORDIC算法迭代运算,迭代运算结束后,输出两组信号x,y;4)交错采样,生成一路与步骤1)和2)中的时钟输入同频且相正交的采样时钟信号,对步骤3)中CORDIC算法输出的两组信号x,y进行采样,并延时2拍输出;5)将步骤4)中采样得到的信号输入DAC,转换成模拟波形输出。该方法大幅降低FPGA的资源占用,为谐波雷达其他逻辑块的实现,留出更多资源,节约生成成本。

    一种基于机器学习的高精度药物定量方法

    公开(公告)号:CN107958695B

    公开(公告)日:2021-12-14

    申请号:CN201711146179.1

    申请日:2017-11-17

    Abstract: 本发明公开了一种基于机器学习的高精度药物定量方法,通过获取定量系统单次落料量的历史数据;将单次落料量的历史数据进行统计学分析,获取训练集;以单次落料量的训练集作为自适应神经网络的输入值,并对自适应神经网络进行学习,得到神经网络模型;输出模型结果;将模型输出响应和期望响应进行对比,输出误差信号;判断累计落料量是否达到目标值;若达到目标值,则完成药物的定量。该方法效率高,对环境适应能力强,定量精度高,操作简单,定量误差小。

    一种基于NMF的微震弱信号识别方法

    公开(公告)号:CN107992802A

    公开(公告)日:2018-05-04

    申请号:CN201711107747.7

    申请日:2017-11-10

    Abstract: 本发明公开了一种基于NMF的微震弱信号识别方法,首先采用S变换对微震信号进行时频分析,然后对时频谱在频率方向上进行重排。采用非负矩阵分解(NMF)对重排的时频矩阵分解得到频域基向量和时域位置向量,从中提取尖锐度、导数平方和、信息熵以及稀疏度等特征参量,构造微震信号的特征空间,最后采用最小二乘支持向量机(LSSVM)对其分类。该方法增强了低频弱信号,也提高了时频分辨率,具有很好的时域和频域局部化能力。

    基于BeagleBone‑Black的Ad‑Hoc路由协议验证方法

    公开(公告)号:CN107086957A

    公开(公告)日:2017-08-22

    申请号:CN201710263969.1

    申请日:2017-04-21

    Abstract: 一种基于BeagleBone‑Black的Ad‑Hoc路由协议验证方法,包括以下步骤:步骤1去除无用模块组件的系统内核移植到各设备节点的BeagleBone‑Black系统上;步骤2将需要验证的路由协议移植到系统上,配置外接网卡参数使节点能正常收发数据;步骤3在户外实地场景中,开启多个设备节点运行路由协议,配置工作模式为Ad‑Hoc,同时系统外接的传感器搜集信号,在一节点上开启定制的软件在网络中寻找目标主机并转发,在目的主机端通过定制软件观察端到端的传输延时、数据的丢包率;步骤4启动所有设备节点进行测试,得出验证结果。采用本发明技术方案可将设备节点带到实地场景中,进一步提升实验数据的真实性与可靠性,简单快捷的组网方式使得此系统具有很好的应用前景。

    一种新型高精度矿用双频激电接收机

    公开(公告)号:CN106646619A

    公开(公告)日:2017-05-10

    申请号:CN201611004980.8

    申请日:2016-11-15

    CPC classification number: G01V3/00

    Abstract: 本发明公开了一种新型高精度矿用双频激电接收机包括信号调理模块、AD转换模块、FPGA处理模块、DSP处理模块、显示模块和电源模块,电源模块给信号调理模块、AD转换模块、FPGA处理模块、DSP处理模块和显示模块供电,FPGA处理模块分别与AD转换模块、DSP处理模块和显示模块连接,AD转换模块还与信号调理模块连接,具有稳定性、抗干扰能力有很大程度的提高,能同时采集到高精度的高、低两种频率的激电电压,且高、低频信号同步精度高,数据处理效率高的优点。

    基于线性相位前端高速数据采集信号调理方法及调理电路

    公开(公告)号:CN106452446A

    公开(公告)日:2017-02-22

    申请号:CN201610919013.8

    申请日:2016-10-21

    CPC classification number: H03M1/66

    Abstract: 本发明公开了一种基于线性相位前端高速数据采集信号调理方法及调理电路,所述电路包括恒流源电路;低通滤波电路;第一差分电路;数字判断电路,对双路差分信号进行数模转换的信号判断;放大电路;第二差分电路;小波去噪电路,减少剔除噪声产生的小波系数,最大限度的保留真实信号的系数;所述恒流源电路、低通滤波电路、第一差分电路、数字判断电路、放大电路、第二差分电路、小波去噪电路顺序连接。这种方法能够实现对传感器产生的微弱信号进行放大、滤波和处理,达到对相位信息处理的更精确和对弱信号调理的目的;这种电路能满足各项参数要求,通过调整参数,该电路可以满足对信号相位要求高的场合,并且具有较高的使用价值。

    一种矿用超高密度电法仪自适应数据采集系统

    公开(公告)号:CN105954805A

    公开(公告)日:2016-09-21

    申请号:CN201610387113.0

    申请日:2016-06-02

    Abstract: 一种矿用超高密度电法仪自适应数据采集系统,所述FPGA处理器分别电性连接PC机和m序列发生器,所述m序列发生器电性连接信号发射模块,所述信号发射模块电性连接电流测量模块,所述信号处理模块、FPGA处理器、PC机、m序列发生器、信号发射模块和电流测量模块均电性连接系统电源。FPGA处理器则控制m序列发生器产生抗干扰能力强的最长伪随机码二进制序列,进而使得发射电流的宽度随机变化,幅度周期出现正负方波信号,因此,克服了传统高密度电法仪数据采集系统抗干扰能力差,测量精度低,分辨率低,系统性能不稳定的问题,能很好的应用于煤矿井下探测,很好的保障了煤矿开采人员的安全,减少煤矿企业的经济损失。

    一种基于NMF的微震弱信号识别方法

    公开(公告)号:CN107992802B

    公开(公告)日:2021-12-21

    申请号:CN201711107747.7

    申请日:2017-11-10

    Abstract: 本发明公开了一种基于NMF的微震弱信号识别方法,首先采用S变换对微震信号进行时频分析,然后对时频谱在频率方向上进行重排。采用非负矩阵分解(NMF)对重排的时频矩阵分解得到频域基向量和时域位置向量,从中提取尖锐度、导数平方和、信息熵以及稀疏度等特征参量,构造微震信号的特征空间,最后采用最小二乘支持向量机(LSSVM)对其分类。该方法增强了低频弱信号,也提高了时频分辨率,具有很好的时域和频域局部化能力。

    一种基于超高密度电法设备提高勘探深度的方法

    公开(公告)号:CN112285786A

    公开(公告)日:2021-01-29

    申请号:CN202011104977.X

    申请日:2020-10-15

    Abstract: 本发明公开了一种基于超高密度电法设备提高勘探深度的方法,超高密度电法设备发射生成自定义编码双极性波,该波由选择的多个主频进行混频处理与根据本原多项式产生的逆M序列叠加,最后进行编码操作而成。主频的幅度、相位、个数根据探测需求自由选择,产生的自定义编码波形在频谱分析上其能量主要落在选择的主频上,在自相关分析上具备逆M序列的循环自相关性质,自定义的波形既可满足频率域探测要求,又可利用伪随机逆M序列码提高系统辨识度,消除辨识误差提高分辨率,接收端采集到的数据采用自适应噪声对消方法消除噪声,利用差分递归最小二乘算法提取纯激电效应和电磁耦合效应,实现在低信噪比的情况下依旧能提取有效信息从而提高勘探深度。

Patent Agency Ranking