-
公开(公告)号:CN118972589A
公开(公告)日:2024-11-15
申请号:CN202411026348.8
申请日:2024-07-30
Applicant: 杭州电子科技大学
IPC: H04N19/129 , H04N19/13 , H04N19/134 , H04N19/21 , H04N19/176 , H04N19/119
Abstract: 本发明公开了基于扫描线并行熵编码二值化优化的硬件流水实现方法,通过获取单帧图像的系数数据,基于多个通道的扫描区域,对系数数据分块,用于多通道间并行执行分块的遍历;构建扩展数组和二维数组用于分块内的系数遍历,扩展数组中,存储上一分块的参考编码系数信息及当前分块的编码系数信息,二维数组中,第一维数组存储当前分块各编码系数信息,第二维数组存储各当前分块编码系数信息对应的在前参考编码系数信息;分块遍历时,根据上一次循环结束后数组的结果,预处理当前分块每个编码系数及其对应的在前参考编码系数,第二维数组用于计算标志位;遍历多个通道的所有分块,计算当前编码系数的标志位的上下文索引增量,将结果顺序输出。
-
公开(公告)号:CN112188212B
公开(公告)日:2024-02-13
申请号:CN202011082884.1
申请日:2020-10-12
Applicant: 杭州电子科技大学
IPC: H04N19/40 , H04N19/136 , H04N7/18 , G06V20/40 , G06V10/25 , G06V10/82 , G06N3/0464
Abstract: 本发明公开了一种高清监控视频智能转码的方法及装置,方法包括:S1,解码;S2,缩放;S3,目标检测,通过卷积神经网络学得的特征,将图像分割成单元格,单元格用于预测边界框,从而检测中心落在单元格中的目标对象;S4,跟踪,对比前后两帧中预测的边界框,实现对目标对象的跟踪;S5,丢帧,采用自适应丢帧操作,根据目标对象的位移矢量大小,判断关键帧的间隔长短,丢弃关键帧之间的非关键帧;S6,编码;装置包括:用于解码的GV9531芯片和用于编码VC8000E芯片,还包括分别与GV9531芯片和VC8000E芯片连接的CSKY860芯片,CSKY860芯片决定需要编码的图像帧。
-
公开(公告)号:CN110049338B
公开(公告)日:2023-04-18
申请号:CN201910344082.4
申请日:2019-04-26
Applicant: 杭州电子科技大学
IPC: H04N19/503 , H04N19/119 , H04N19/96 , H04N19/147 , H04N19/14 , H04N19/30 , H04N19/103
Abstract: 本发明公开了基于多层次分类的HEVC快速帧间编码方法。本发明包括运用CU层次的分类树、PU层次的分类树和TU层次的分类树实现HEVC快速帧间编码,其内容包括基于CU深度分类树的快速CU划分方法、基于帧间模式分类树的快速PU选择方法和基于TU深度分类树的TU划分方法。本发明利用了HEVC编码过程中CU深度、PU模式和TU深度在时空上的相似性,减少了CU划分的复杂度,简化了帧间预测模式的选择过程,同时利用TU的变换系数特征,降低了TU划分的复杂度。
-
公开(公告)号:CN115442620A
公开(公告)日:2022-12-06
申请号:CN202211095417.1
申请日:2022-09-06
Applicant: 杭州电子科技大学
IPC: H04N19/52 , H04N19/149 , H04N19/159 , H04N19/29 , H04N19/48
Abstract: 本发明属于视频编码领域,公开了一种AME低复杂度仿射运动估计方法,包括如下步骤:步骤1:基于划分深度的最优帧间模式的提前预测:根据父CU最优帧间模式来预测子CU最优帧间模式;步骤2:AME内部的低复杂度算法:在AME算法内部,通过CPMV平行与否、迭代过程的提前终止以及有无必要进行细粒度调整优化来加速AME算法;步骤3:AME外部的低复杂度算法:对于需要在传统Inter和AME之间进行模式决策的CU提取相关特征,基于决策树对这样的CU进行提前预测其最优帧间模式,以此跳过RDO决策及次优模式的遍历过程。本发明大大减少了VVC帧间模式决策复杂度。
-
公开(公告)号:CN111405264B
公开(公告)日:2022-04-12
申请号:CN202010068774.3
申请日:2020-01-20
Applicant: 杭州电子科技大学
IPC: H04N13/122 , H04N13/128 , H04N13/15
Abstract: 本发明公开了一种基于深度调整的3D视频舒适度改善方法。解决了一般3D视频观看不舒适、视觉体验不佳的问题。本发明包括以下步骤:S1:对左视点图、右视点图的深度图都进行预处理,得到预处理图;S2:对预处理图进行深度滤波,得到滤波图;S3:对滤波图进行深度去纹理,得到去纹理图;S4:根据去纹理图进行虚拟视点绘制,获得虚拟右视点彩色图;S5:用虚拟右视点彩色图和原始视点图进行替换得到改善的3D视频。本发明的增益效果是降低了视差、梯度变化、纹理对观感体验的影响,实现了整体舒适度的改善。
-
公开(公告)号:CN113365062A
公开(公告)日:2021-09-07
申请号:CN202110577832.X
申请日:2021-05-26
Applicant: 杭州电子科技大学
IPC: H04N19/124 , H04N19/70 , H04N19/60 , H04N19/176 , H04N19/12 , G06N3/04 , G06N3/08
Abstract: 本发明属于视频编码领域,公开了一种基于H.266/VVC的分步全零块判决快速算法,包括如下步骤:首先,通过公式推导,得到一个真全零块(G‑AZB)预判决公式,所谓G‑AZB,即经过硬决策量化(HDQ)后为全零的变换块(TU);然后,对于那些经过HDQ后的非全零块,即伪全零块(P‑AZB),利用基于统计和经验得出的自适应阈值公式实现预判决;最后,对于剩余的一些“狡猾”的P‑AZB,利用机器学习,找寻了8个影响TU变成全零或者非全零块的影响因子,通过离线训练,实现预判决。本发明在保证性能基本不变的前提下,减少了计算复杂度;本发明在新一代视频编码标准VVC上进行,创新度较高。
-
公开(公告)号:CN112188212A
公开(公告)日:2021-01-05
申请号:CN202011082884.1
申请日:2020-10-12
Applicant: 杭州电子科技大学
IPC: H04N19/40 , H04N19/136 , H04N7/18 , G06K9/00 , G06N3/04
Abstract: 本发明公开了一种高清监控视频智能转码的方法及装置,方法包括:S1,解码;S2,缩放;S3,目标检测,通过卷积神经网络学得的特征,将图像分割成单元格,单元格用于预测边界框,从而检测中心落在单元格中的目标对象;S4,跟踪,对比前后两帧中预测的边界框,实现对目标对象的跟踪;S5,丢帧,采用自适应丢帧操作,根据目标对象的位移矢量大小,判断关键帧的间隔长短,丢弃关键帧之间的非关键帧;S6,编码;装置包括:用于解码的GV9531芯片和用于编码VC8000E芯片,还包括分别与GV9531芯片和VC8000E芯片连接的CSKY860芯片,CSKY860芯片决定需要编码的图像帧。
-
公开(公告)号:CN106339664A
公开(公告)日:2017-01-18
申请号:CN201610657250.1
申请日:2016-08-10
Applicant: 杭州电子科技大学
IPC: G06K9/00
CPC classification number: G06K9/00718 , G06K2009/00738
Abstract: 本发明涉及一种基于颜色混合模型和多特征组合的视频烟雾检测方法。现有方法对于复杂情况下的烟雾检测存在较高的误检率。本发明方法包括:疑似烟雾区域提取,对视频帧获取疑似烟雾运动区域,疑似烟雾颜色区域;将疑似烟雾运动区域及疑似烟雾颜色区域进行结合获取疑似烟雾区域;烟雾特征识别,根据运动速度均值与方差、烟雾的运动方向、烟雾面积增长率对疑似烟雾区域进行烟雾识别。本发明方法对疑似烟雾区域中的假烟雾区域进行进一步剔除,有效避免了干扰区域对烟雾检测的影响,具有较高的检测成功率。
-
公开(公告)号:CN105163129A
公开(公告)日:2015-12-16
申请号:CN201510608870.1
申请日:2015-09-22
Applicant: 杭州电子科技大学
IPC: H04N19/597 , H04N19/176 , H04N19/59
Abstract: 本发明涉及一种梯度图引导的基于深度重采样3D-HEVC编解码方法。本发明该方法对纹理视频按原始分辨率进行编码,对深度视频进行降分辨率编码;编码端采用梯度图引导的分块中值滤波的方法对深度视频下采样;解码端采用梯度图引导的邻域估值的方法对深度视频上采样;最后对解码得到的纹理视频和上采样深度视频进行视点合成,得到所需的多视点视频。本发明方法在保持编码性能的前提下,保护了深度视频的边缘,提高了深度视频重采样的质量,降低了算法复杂度。
-
公开(公告)号:CN115131209A
公开(公告)日:2022-09-30
申请号:CN202210740614.8
申请日:2022-06-28
Applicant: 杭州电子科技大学
Abstract: 本发明属于图像处理领域,公开了一种基于DSP的实时视频拼接方法,采用select操作方式定向选择数据,借助gather和scatter指令将不连续RAM地址中的数据加载到向量寄存器中;图像配准算法部分:在匹配前设定阈值预筛选特征点,基于汉明距离进行特征点匹配。算法均使用SIMD指令集并行处理多数据,提高计算效率;采用PING‑PONG方式传输数据,旨在隐藏视频拼接过程中外部存储器访问的周期,从而有效提高数据吞吐量。最后,基于DAG生成算法调度表,在双DSP平台上并行执行ORB特征提取算法。本发明减少了计算复杂度;并为计算机视觉相关的算法在DSP平台上研究提供了参考。
-
-
-
-
-
-
-
-
-