-
公开(公告)号:CN119622735A
公开(公告)日:2025-03-14
申请号:CN202411665446.6
申请日:2024-11-20
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/57 , G06F8/71 , G06F8/75 , G06F18/25 , G06N3/0455 , G06N3/0495 , G06N3/082 , G06N3/084 , G06N3/0985
Abstract: 本公开涉及漏洞检测技术领域,提出了一种基于语义感知稀疏注意力的细粒度漏洞检测方法及系统,包括:解析待检测源代码,生成抽象语法树、控制流图和程序依赖图;将抽象语法树、控制流图和程序依赖图的图表示进行加权融合,整合为代码属性图;针对代码属性图,采用融合稀疏注意力、可学习Token剪枝方法以及Top‑k交互频率结合的语义感知稀疏注意力方法处理,得到Token注意力分数;基于得到的Token注意力分数,累加代码每行中每个Token的注意力分数,检测确定漏洞代码所在的语句。本公开的检测方法能够有效提升对代码语义信息的建模和结构化依赖关系的捕捉能力,同时显著降低计算复杂度。
-
公开(公告)号:CN118427704A
公开(公告)日:2024-08-02
申请号:CN202410854924.1
申请日:2024-06-28
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/2413 , G06F18/214 , G06F18/2433 , G06F18/21 , G06N3/0442 , G06N3/0455 , G06N3/08
Abstract: 本发明涉及基于GRU的变分自编码器的攻击和防御方法及系统,属于工业控制系统攻击防御技术领域。包括:将数据集划分为训练集和测试集;对训练集和测试集进行数据预处理;利用训练好的GRU模型来学习各个传感器序列之间的约束关系;在测试数据中对传感器加入不同的扰动,利用所学到的各个传感器序列之间的约束关系并结合FGSM攻击方法来生成对抗样本;采用处理好的数据集对VAE异常检测模型进行训练,得到VAE异常检测模型的训练的重构误差;将VAE异常检测模型训练的重构误差与权重矩阵相结合,得到优化重构误差,并且采用优化重构误差来检测是正常或者异常。本发明提升了模型鲁棒性,免受针对最弱特征的攻击而且可解释性强。
-
公开(公告)号:CN118114040A
公开(公告)日:2024-05-31
申请号:CN202410089465.2
申请日:2024-01-22
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/214 , G06F18/25 , G06F18/211 , G06F18/2433 , G06N3/094 , G06N3/0455 , G06N3/045 , G06N3/042
Abstract: 本发明提出了一种对抗样本生成方法及系统,涉及工业控制系统对抗样本攻击研究技术领域,采集工业控制系统正常运行状态下的工控时序数据;将工控时序数据输入到训练好的时序数据预测模型中,生成初始对抗样本;利用数据类型规则检查器和不变量规则检查器对初始对抗样本进行优化,得到最终的对抗性样本;时序数据预测模型采用金字塔注意力结构充分挖掘时间序列数据的变化规律,结合CBAM注意力模块,对时间特征和空间特征添加注意力机制使其专注于重要特征。本发明采用时序数据预测模型,生成初始对抗样本,并通过不变量规则检查器和数据类型检查器来优化对抗性样本,利用深度学习模型和规则检查器的优势来提高对抗性样本的质量和可转移性。
-
公开(公告)号:CN117828193B
公开(公告)日:2024-05-17
申请号:CN202410238782.6
申请日:2024-03-04
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F16/9535 , G06N3/098 , G06N3/0442
Abstract: 本发明属于计算机兴趣点推荐领域,提供了一种基于多兴趣半联合学习兴趣推荐方法、系统、设备及介质,包括获取用户行为数据进行预处理;基于预处理后的用户行为数据,利用预先训练好的多兴趣模型的半联合学习框架进行兴趣推荐;本发明能够有效识别多粒度的用户兴趣并感知时钟影响的连续依赖性,以不同粒度的兴趣组合来指导用户行为建模,并具体化时间点以学习连续的兴趣依赖关系;通过单模型预训练和多模型半联合训练,结合所有粒度的兴趣,为用户推荐其在未来指定的N个时间窗口内感兴趣的POI。
-
公开(公告)号:CN116468812A
公开(公告)日:2023-07-21
申请号:CN202310548454.1
申请日:2023-05-16
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06T9/00 , G06N3/0464 , G06V10/80
Abstract: 本发明涉及一种基于多分支和多尺度的图像压缩感知重构方法及系统,包括:步骤1:获取并预处理训练数据集;步骤2:对图像进行多分支分块采样,获得采样值;步骤3:对采样值执行上采样、整形和拼接操作来完成初始重建;步骤4:设置一个卷积层进行特征提取;步骤5:对融合层Z使用三次卷积进行降通道并将其结果与初始重建相加形成最终重建图像。本发明提取的丰富特征信息,对重建效果起到了关键作用;多尺度特征融合残差块通过不同的卷积核获取不同层次的空间特征信息,进一步提高了图像的重建质量;局部残差的设计,提高了网络模型的稳定性,解决了网络随深度的增加所引发的梯度消失、网络退化等一系列问题。
-
公开(公告)号:CN115373374B
公开(公告)日:2023-01-31
申请号:CN202211314377.5
申请日:2022-10-26
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明属于工业控制系统异常检测技术领域,提供了一种基于图神经和门控循环网络的工控异常检测方法及系统,首先将传感器的时序数据转化为嵌入向量的形式,显式地对不同特征的相关性进行建模,将结构学习方法与图神经网络相结合,利用门控循环网络深入挖掘多元时间序列间的潜在关系,同时结合注意力机制为检测到的异常提供可解释性;本发明能够有效实现对工业控制系统数据的异常检测,能够实现出色的检测性能。
-
公开(公告)号:CN115373374A
公开(公告)日:2022-11-22
申请号:CN202211314377.5
申请日:2022-10-26
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明属于工业控制系统异常检测技术领域,提供了一种基于图神经和门控循环网络的工控异常检测方法及系统,首先将传感器的时序数据转化为嵌入向量的形式,显式地对不同特征的相关性进行建模,将结构学习方法与图神经网络相结合,利用门控循环网络深入挖掘多元时间序列间的潜在关系,同时结合注意力机制为检测到的异常提供可解释性;本发明能够有效实现对工业控制系统数据的异常检测,能够实现出色的检测性能。
-
公开(公告)号:CN114595448A
公开(公告)日:2022-06-07
申请号:CN202210247513.7
申请日:2022-03-14
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及一种基于相关性分析和三维卷积的工控异常检测方法、系统、设备及存储介质,该方法以工控系统传感器和执行器数据作为目标数据。计算相邻时间采集到的目标数据之间的相关性,以确定最长序列长度,进一步根据最长序列长度确定RGB图的大小,计算观测数据的相关性并与序列长度列表对比得到粗粒度异常序列;根据序列长度列表得到不同长度的序列作为输入,利用改进的三维卷积神经网络从时空两个维度学习数据特征,深度解析数据关键信息点,从细粒度分析异常数据。本发明从粗粒度和细粒度两阶段分析工控数据,可以有效检测工控过程中的异常数据,实现异常检测准确率的提升。
-
公开(公告)号:CN118917315B
公开(公告)日:2025-04-04
申请号:CN202411127569.4
申请日:2024-08-16
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F40/295 , G06N3/045 , G06N3/0464 , G06N3/0442 , G06F40/30 , G06F40/253 , G06N3/048 , G06F16/35
Abstract: 本发明涉及基于Bert与深度学习模型的威胁情报实体检测方法,包括:首先,利用预训练的BERT模型捕捉文本的基本语义信息,并构建语法结构图;然后,将语法结构图被送入图注意力网络处理,分析实体间的复杂依赖关系;同时,将BERT模型输出的CLS向量与通过Text‑CNN处理得到的全局向量进行拼接,形成包含全局上下文信息和局部细节特征的HCV;此外,获得单词时序上下文信息以及实体单词之间的重要性关联;最后,将来自不同模块的向量进行融合,放入条件随机场层进行实体的识别,获得威胁实体的输出。本发明在处理网络安全领域专业术语和复杂语境时,表现出更优异的性能。
-
公开(公告)号:CN119622722A
公开(公告)日:2025-03-14
申请号:CN202411665444.7
申请日:2024-11-20
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06N3/045 , G06N3/042 , G06N3/0442 , G06N3/0464 , G06N3/084 , G06N3/096 , G06N3/0985 , G06V10/42 , G06V10/44 , G06V10/764 , G06V10/80 , G06V10/82
Abstract: 本发明公开了一种基于动态多专家卷积网络的恶意代码识别方法和系统,涉及计算机处理技术领域。该方法包括步骤:获取待检测的数据,对待检测的数据进行预处理;构建恶意代码检测模型,其中,恶意代码检测模型包括多个并联的专家分支,并且能够动态选择不同专家分支的输出组合;利用已知数据集对恶意代码检测模型进行训练;利用训练好的恶意代码检测模型对待检测的数据进行恶意代码识别。本发明基于深度学习,利用开集识别技术和多专家决策技术针对未知的恶意软件实现自动分类。
-
-
-
-
-
-
-
-
-