基于多兴趣半联合学习兴趣推荐方法、系统、设备及介质

    公开(公告)号:CN117828193B

    公开(公告)日:2024-05-17

    申请号:CN202410238782.6

    申请日:2024-03-04

    Abstract: 本发明属于计算机兴趣点推荐领域,提供了一种基于多兴趣半联合学习兴趣推荐方法、系统、设备及介质,包括获取用户行为数据进行预处理;基于预处理后的用户行为数据,利用预先训练好的多兴趣模型的半联合学习框架进行兴趣推荐;本发明能够有效识别多粒度的用户兴趣并感知时钟影响的连续依赖性,以不同粒度的兴趣组合来指导用户行为建模,并具体化时间点以学习连续的兴趣依赖关系;通过单模型预训练和多模型半联合训练,结合所有粒度的兴趣,为用户推荐其在未来指定的N个时间窗口内感兴趣的POI。

    一种基于多分支和多尺度的图像压缩感知重构方法及系统

    公开(公告)号:CN116468812A

    公开(公告)日:2023-07-21

    申请号:CN202310548454.1

    申请日:2023-05-16

    Abstract: 本发明涉及一种基于多分支和多尺度的图像压缩感知重构方法及系统,包括:步骤1:获取并预处理训练数据集;步骤2:对图像进行多分支分块采样,获得采样值;步骤3:对采样值执行上采样、整形和拼接操作来完成初始重建;步骤4:设置一个卷积层进行特征提取;步骤5:对融合层Z使用三次卷积进行降通道并将其结果与初始重建相加形成最终重建图像。本发明提取的丰富特征信息,对重建效果起到了关键作用;多尺度特征融合残差块通过不同的卷积核获取不同层次的空间特征信息,进一步提高了图像的重建质量;局部残差的设计,提高了网络模型的稳定性,解决了网络随深度的增加所引发的梯度消失、网络退化等一系列问题。

Patent Agency Ranking