-
公开(公告)号:CN104573033A
公开(公告)日:2015-04-29
申请号:CN201510020876.7
申请日:2015-01-15
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
CPC classification number: G06F17/30876 , G06F17/30887
Abstract: 本发明提出了一种动态URL过滤方法及装置,该方法包括:基于URL标注集创建信息字典;针对URL标注集中的每一个URL,根据所述信息字典生成对应的特征向量,由URL标注集中所有的URL对应的特征向量组成特征矩阵;对URL特征矩阵进行分类得到特征权重向量和二分类阈值;基于所述信息字段对待预测的URL进行特征提取,并基于提取出的特征生成所述待预测的URL的特征向量;将所述待预测的URL的特征向量与所述特征权重向量对应相乘后相加得到目标数值,将目标数值与二分类阈值相比较以判断所述待预测的URL是动态URL还是静态URL。本发明可以离线处理,不需要访问网络、减少了存储,比较节省处理时间和计算资源。
-
公开(公告)号:CN119068375A
公开(公告)日:2024-12-03
申请号:CN202310617738.1
申请日:2023-05-30
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06V20/40 , G06V10/74 , G06V10/762 , G06V10/764 , G06V10/82 , G06F16/75 , G06F16/783
Abstract: 本发明实施例提供了一种视频类别确定方法和装置,其中,该方法包括:获取多个视频数据集作为训练样本,其中,训练样本包括支撑集和测试集;通过预训练网络分别提取支撑集和测试集的关键帧,并基于支撑集通过Faiss方法构建关键帧检索库;通过预先设定的小样本分类方法基于测试集的关键帧和关键帧检索库进行分类训练,得到分类模型;获取待分类的视频,通过分类模型对待分类的视频进行分类,得到分类结果。通过本发明,解决了视频某一维度信息的分类结果不够准确的问题,达到对视频维度信息分类更准确的效果。
-
公开(公告)号:CN118821774A
公开(公告)日:2024-10-22
申请号:CN202410768549.9
申请日:2024-06-14
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/295 , G06N3/0442 , G06N3/0455 , G06N3/08
Abstract: 本发明公开一种基于序列转化的命名实体识别方法及系统,属于信息抽取领域。所述方法包括:利用双向长短记忆神经网络解码自然文本,得到第t个时间步的隐藏向量ht;利用单向长短记忆网络对所述隐藏向量ht进行解码,得到第j个时间步的解码结果sj;基于第j‑1个时间步的解码结果sj‑1生成第j个时间步的标签概率分布矩阵Pj;获取条件随机场生成的标签转移概率矩阵Aj;基于所有时间步j上的标签概率分布矩阵Pj和标签转移概率矩阵Aj,得到自然文本对应的命名实体识别结果。本发明可以利用过去和未来的标签来高精度地预测当前标签。
-
公开(公告)号:CN111163065A
公开(公告)日:2020-05-15
申请号:CN201911279299.8
申请日:2019-12-13
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L29/06 , G06F16/2458 , G06F16/23
Abstract: 本发明提出了一种异常用户检测方法及装置,检测方法包括:获取用户的行为数据信息;对行为数据信息进行预处理,获得行为序列;将行为序列与预先训练的异常行为库中的异常行为特征进行匹配,以判定用户是否为异常用户;其中,行为序列包括:操作事件和时间间隔信息。根据本发明的异常用户检测方法,依据移动端用户行为的特点,充分利用异常用户特征,在行为序列挖掘过程中,加入时间间隔属性,进行带有时间间隔的行为序列挖掘,可以有效提升异常用户检测的准确率。
-
公开(公告)号:CN106250207A
公开(公告)日:2016-12-21
申请号:CN201610618703.X
申请日:2016-07-27
Applicant: 汉柏科技有限公司 , 国家计算机网络与信息安全管理中心
IPC: G06F9/455
CPC classification number: G06F9/45558 , G06F2009/45583
Abstract: 本发明实施例公开了一种虚拟机扩容处理方法及装置,所述方法包括:根据虚拟机的磁盘分配大小、磁盘使用大小和预设的扩容告警值,计算获知所述虚拟机需要扩容;根据预设扩容值,对所述虚拟机进行扩容。所述装置包括:磁盘计算模块和扩容模块。本发明实施例通过对虚拟机当前的磁盘分配大小、磁盘使用大小和预设的扩容告警值进行计算,实时获知虚拟机的状态,当需要扩容时,再对虚拟机进行扩容,不仅能够实时监控虚拟机当前的状态,而且根据虚拟机当前状态进行扩容,节省了计算机资源。
-
公开(公告)号:CN117149949B
公开(公告)日:2024-12-17
申请号:CN202311059658.5
申请日:2023-08-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/33 , G06F16/335 , G06F16/35 , G06F18/23
Abstract: 本发明公开了一种融合多源信息的人名消歧方法及装置,所述方法包括:将所有文本划分为若干个类;基于同名作者对应的机构名称、文本共同作者和文本主题内容,分别对每一类文本进行聚类,以得到该类文本的机构名第一聚类结果、共同作者第一聚类结果和主题内容第一聚类结果;基于簇内机构信息及文本的共现信息,对机构名第一聚类结果、共同作者第一聚类结果和主题内容第一聚类结果进行融合,得到该类文本的初步聚类结果;提取初步聚类结果中的单簇文本,并基于所述单簇文本与该类文本中其他文本的相似度进行单簇文本的融合后,得到人名消歧结果。本发明可以实现了更好的消歧准确率。
-
公开(公告)号:CN119068376A
公开(公告)日:2024-12-03
申请号:CN202310623041.5
申请日:2023-05-30
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06V20/40 , G06V20/00 , G06V40/16 , G06V40/40 , G06V10/46 , G06V10/50 , G06V10/74 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/0895 , G06N3/084
Abstract: 本申请公开了一种深度伪造视频的溯源方法和装置。其中,该方法包括:利用全局特征匹配预训练数据集对第一原始模型进行训练,得到第一目标模型,第一原始模型是结合语言监督和图像自监督的多任务模型,用于从全局特征匹配预训练数据集中学习图像与图像之间的特征关联、图像与文本之间的特征关联;利用第一目标模型对深度伪造视频进行溯源。本申请解决相关技术中不能对深度伪造视频进行溯源的技术问题。
-
公开(公告)号:CN117271765A
公开(公告)日:2023-12-22
申请号:CN202311059507.X
申请日:2023-08-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F40/30 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于多语义特征融合的文本分类方法及装置,所述方法包括:获取待分类的文本,将所述待分类的文本进行预处理,得到处理后的文本;将词级粒度向量输入训练完毕的词级语义特征提取模型,得到词级语义特征;将句子级粒度向量输入训练完毕的句子级语义特征提取模型,得到句子级语义特征;基于文章级向量对所述处理后的文本进行特征提取,得到文本级语义特征;将所述词级语义特征、句子级语义特征以及文本级语义特征进行特征拼接融合,得到融合后特征,使用分类器对所述融合后特征进行分类。本方法从词粒度、句子粒度和文章粒度等多个层面对文本进行精细语义建模,利用文本的多语义融合特征进行文本分类,提高了文本分类的准确率。
-
公开(公告)号:CN117149949A
公开(公告)日:2023-12-01
申请号:CN202311059658.5
申请日:2023-08-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/33 , G06F16/335 , G06F16/35 , G06F18/23
Abstract: 本发明公开了一种融合多源信息的人名消歧方法及装置,所述方法包括:将所有文本划分为若干个类;基于同名作者对应的机构名称、文本共同作者和文本主题内容,分别对每一类文本进行聚类,以得到该类文本的机构名第一聚类结果、共同作者第一聚类结果和主题内容第一聚类结果;基于簇内机构信息及文本的共现信息,对机构名第一聚类结果、共同作者第一聚类结果和主题内容第一聚类结果进行融合,得到该类文本的初步聚类结果;提取初步聚类结果中的单簇文本,并基于所述单簇文本与该类文本中其他文本的相似度进行单簇文本的融合后,得到人名消歧结果。本发明可以实现了更好的消歧准确率。
-
公开(公告)号:CN115809368A
公开(公告)日:2023-03-17
申请号:CN202211660700.4
申请日:2022-12-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F40/289 , G06F40/30 , G06F16/35 , G06N3/0442 , G06N3/0464 , G06N3/045 , G06N3/048 , G06N3/047 , G06N3/08
Abstract: 本发明涉及侦测搜索技术领域,具体公开了一种基于HTML结构特征的端到端色情网站侦测方法,包括词嵌入层、Bi‑LSTM层、卷积层、Attention层,研究了搜索引擎的网站排名机制和HTML的标签结构特征,通过提取HTML源代码中的meta标签作为文本数据集,构建了BiLSTM+TextCNN+Attention协同模型用于色情网站侦测。
-
-
-
-
-
-
-
-
-