-
公开(公告)号:CN107993255A
公开(公告)日:2018-05-04
申请号:CN201711220774.5
申请日:2017-11-29
Applicant: 哈尔滨工程大学
IPC: G06T7/269
Abstract: 本发明属于计算机视觉领域,提供了一种基于卷积神经网络的稠密光流估计方法,以解决现有技术计算时间长,计算量大,计算效率不高的问题,包含如下步骤:(1)提取运动图像信息:构建全卷积网络架构,然后在输入层输入两幅通道数都为C的图像,从卷积层8输出光流_6;(2)生成光流:构建稠密光流生成模型。光流_6输入反卷积层1,反卷积层2输出光流_5,反卷积层3输出光流_4,反卷积层4输出光流_3,反卷积层5输出光流_2,反卷积层6输出光流_1;(3)模型训练:用最终损失函数进行训练;(4)光流估计:从全卷积网络架构的输入层输入图像对,输出最终预测的光流。本发明能够有效地利用先验知识,模型可以预先训练,大大减少了计算时间。