-
公开(公告)号:CN109189075A
公开(公告)日:2019-01-11
申请号:CN201811169436.8
申请日:2018-10-08
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明提供一种舰船用模糊遗忘因子无模型自适应航向控制方法,建立航向系统模型,下达期望航向指令y(k)*,设定航向偏差的阈值e0,根据舰船期望航向y*(k),与舰船当前航向y(k),计算航向偏差e(k)和偏差变化率ec(k),当e(k)的绝对值|e(k)|小于航向偏差的阈值e0,跳出循环,否则继续执行,模糊遗忘因子MFAC控制器根据e(k)、ec(k)在线调整遗忘因子β并解算出航向系统的期望输入u(k),系统接收并执行航向系统输入指令u(k),令k=k+1,更新舰船当前航向y(k)。本发明解决了MFAC控制算法产生积分饱和问题,提高了系统响应速度以及控制精度,提高了控制系统的自适应性以及鲁棒性。
-
公开(公告)号:CN117193012B
公开(公告)日:2024-08-02
申请号:CN202311289513.4
申请日:2023-10-07
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 海洋机器人的高阶输出式无模型自适应航向控制方法及系统,属于海洋机器人控制技术领域。为了解决现有MFAC算法均存在的航向控制系统与MFAC控制器之间动态响应速度不匹配的问题。本发明首先计算控制器运行k次时的实际艏向与运行k‑1次时的实际艏向的差值得到一阶差分输出信息Δy(k),以及控制器运行k‑1次时的实际艏向与运行k‑2次时的实际艏向的差值得到一阶差分输出信息Δy(k‑1);然后计算一阶差分输出信息Δy(k)和Δy(k‑1)的差值得到二阶差分输出信息;将艏向误差e(k)、一阶差分输出信息Δy(k)、二阶差分输出信息Δy(k)‑Δy(k‑1)作为无模型自适应控制器的输入解算出期望输入u(k),无模型自适应控制器基于控制输入准则函数构建得到。
-
公开(公告)号:CN109343555B
公开(公告)日:2021-10-01
申请号:CN201811310161.5
申请日:2018-11-06
Applicant: 哈尔滨工程大学
Abstract: 本发明提出了一种基于仿鱼侧线的岸壁效应测量及船舶艏向补偿控制方法,属于船舶运动控制技术领域,利用仿鱼侧线的方法消除岸壁效应影响,控制船舶近岸行驶时的艏向,实现步骤包括:(1)在船舶近岸侧及远离岸壁侧的船体上分别安装仿鱼侧线装置;(2)利用流体力学中流体作用于曲面时的压力计算原理,计算岸壁效应对船体产生的力F及力矩M;(3)将F及M带入船舶操纵运动方程,计算补偿舵角;(4)计算舵角,并将舵角输入船舶的自动舵装置,控制船舶运行方向。本发明具有普遍适用性,不受船体曲面、岸壁形状的限制;运用传感器测量,结果更加精准;实时获取数据,可在线、实时补偿岸壁效应的不利影响,实现艏向的前馈补偿控制。
-
公开(公告)号:CN109144066B
公开(公告)日:2021-07-06
申请号:CN201811031878.6
申请日:2018-09-05
Applicant: 哈尔滨工程大学
Abstract: 本发明属于舰船运动控制领域,具体涉及一种舰船用积分分离式PI型紧格式无模型自适应航向控制算法。包括在紧格式无模型自适应控制算法的基础上引入比例项构成PI型CFDL_MFAC算法,比例项的离散形式为kp·Δe(k);设定航向偏差阈值e0;计算航向偏差e(k),其中e(k)=y*(k)‑y(k);当e(k)的绝对值|e(k)|大于设定的航向状态偏差的阈值e1;积分分离式PI_CFDL_MFAC控制器根据e(k),解算出航向系统的期望输入u(k);令k=k+1,更新航向舰船当前航向y(k)。本发明通过在控制算法中引入比例项,提高了系统的响应速度,同时在算法中引入积分分离的思想,避免了原控制算法直接应用到舰船航向控制中因积分饱合造成系统震荡甚至失稳的问题,比例项与积分分离思想的引入扩展了CFDL_MFAC理论的应用范围,从而使得舰船航向能够快速稳定收敛到期望航向。
-
公开(公告)号:CN112054761A
公开(公告)日:2020-12-08
申请号:CN202010805538.5
申请日:2020-08-12
Applicant: 哈尔滨工程大学
Abstract: 本发明属于自然能驱动机器人技术领域,具体涉及一种带有太阳能板无源双模自动清洁装置的自然能驱动机器人。本发明的太阳能清洁模块采用无源混合能源驱动,不消耗自然能驱动机器人本身所载能量;驱动能源易于获得且不单一,通过NSV的姿态变化和太阳能板周围的热量获得能量,能在不同天气的各个时刻进行捕获,双模的混合驱动源增加了装置的鲁棒性;本发明清洁太阳能板可自动完成且时机精准,根据比对太阳能板的发电状态和当时环境的理论发电状态决定清洁动作,摒弃了传统的定时清洁方式,达到耗能和捕能的最优状态。本发明通过混合的海上能源捕获,在不浪费NSV自身能量的前提下对太阳能板进行自动精准的清洗维护,提高NSV的续航力。
-
公开(公告)号:CN111994248A
公开(公告)日:2020-11-27
申请号:CN202010891303.2
申请日:2020-08-30
Applicant: 哈尔滨工程大学
IPC: B63H19/02
Abstract: 本发明属于波浪能的捕获与转化和转换技术领域,具体涉及一种横摇运动捕获推进装置及带有该装置的波浪能驱动无人艇。本发明的横摇运动捕获推进装置无额外能量损耗,有效利用了无人艇横摇运动的能量用于推进,增加了无人艇的续航性,实现了波浪能的高效利用,有效地延长了无人艇工作时间。本发明的横摇运动捕获推进装置利用波浪能,不需要消耗无人艇本身携带的能源,将无人艇本身携带的能源全部用于执行航行任务,波浪推进对海浪情况要求较小,理论上可适应全浪向海况。
-
公开(公告)号:CN110705623A
公开(公告)日:2020-01-17
申请号:CN201910915844.1
申请日:2019-09-26
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于全卷积神经网络的海天线在线检测方法,用于完成无人艇在水面环境下对海天线的检测任务,即根据水面无人艇所携带的光视觉传感器传回的图像信息和水面无人艇的艇体姿态信息对当前传感器视角下的海天线进行预测,基于分类拟合原理,针对复杂的水面环境,依据水面图像的大体类别信息,设计全卷积神经网络和全连接网络模型,解决复杂水面环境下传感器的稳像问题以及艇体位姿的修正问题,同时也可以缩小搜索区域,加快搜索速度,为水面无人艇环境感知和运动规划及控制提供准确的传感器信息等。
-
公开(公告)号:CN109343555A
公开(公告)日:2019-02-15
申请号:CN201811310161.5
申请日:2018-11-06
Applicant: 哈尔滨工程大学
Abstract: 本发明提出了一种基于仿鱼侧线的岸壁效应测量及船舶艏向补偿控制方法,属于船舶运动控制技术领域,利用仿鱼侧线的方法消除岸壁效应影响,控制船舶近岸行驶时的艏向,实现步骤包括:(1)在船舶近岸侧及远离岸壁侧的船体上分别安装仿鱼侧线装置;(2)利用流体力学中流体作用于曲面时的压力计算原理,计算岸壁效应对船体产生的力F及力矩M;(3)将F及M带入船舶操纵运动方程,计算补偿舵角;(4)计算舵角,并将舵角输入船舶的自动舵装置,控制船舶运行方向。本发明具有普遍适用性,不受船体曲面、岸壁形状的限制;运用传感器测量,结果更加精准;实时获取数据,可在线、实时补偿岸壁效应的不利影响,实现艏向的前馈补偿控制。
-
公开(公告)号:CN117193012A
公开(公告)日:2023-12-08
申请号:CN202311289513.4
申请日:2023-10-07
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 海洋机器人的高阶输出式无模型自适应航向控制方法及系统,属于海洋机器人控制技术领域。为了解决现有MFAC算法均存在的航向控制系统与MFAC控制器之间动态响应速度不匹配的问题。本发明首先计算控制器运行k次时的实际艏向与运行k‑1次时的实际艏向的差值得到一阶差分输出信息Δy(k),以及控制器运行k‑1次时的实际艏向与运行k‑2次时的实际艏向的差值得到一阶差分输出信息Δy(k‑1);然后计算一阶差分输出信息Δy(k)和Δy(k‑1)的差值得到二阶差分输出信息;将艏向误差e(k)、一阶差分输出信息Δy(k)、二阶差分输出信息Δy(k)‑Δy(k‑1)作为无模型自适应控制器的输入解算出期望输入u(k),无模型自适应控制器基于控制输入准则函数构建得到。
-
公开(公告)号:CN110161858B
公开(公告)日:2022-05-20
申请号:CN201910451217.7
申请日:2019-05-28
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 本发明提供的是一种自然能驱动无人艇用面向螺旋桨减震的航速控制方法。(1)设定控制输入数据丢包的起始时刻t0,根据波浪周期T0决定每次丢包所包含的控制输入数据的数量n的上限;(2)当kiT≤t<ki+1T时,令v(t)=v(kiT);(3)将期望航速v*(k)与当前实际航速v(t)相减得到误差e(kiT),根据e(kiT)求解控制输出F(t),当e(kiT)的绝对值|e(kiT)|小于设定的偏差阈值e0时执行步骤(4)否则执行(5);(4)当螺旋桨的震荡频率f小于不丢包时螺旋桨的震荡频率f1跳出循环,否则令n=n+1;(5)根据e(kiT)解算出控制输出指令F(t);(6)推进机构接收并执行控制输出指令F(t),更新自然能驱动无人艇航速v(t),并转到步骤(2)。本发明不仅实现了对自然能驱动无人艇航速的有效控制,同时解决了自然能驱动无人艇推进机构震荡剧烈的问题。
-
-
-
-
-
-
-
-
-