-
公开(公告)号:CN107592622A
公开(公告)日:2018-01-16
申请号:CN201710599176.7
申请日:2017-07-21
Applicant: 哈尔滨工程大学
Abstract: 本发明提出了一种基于地理位置信息的机会型并行传输MAC协议,引入地理位置信息这一要素,对局部并行映射表和并行控制算法两方面进行改进,提出了基于地理位置信息的机会型并行传输MAC协议。在此基础上,对并行映射表和并行控制算法的相应部进行了改进;发送端节点通过局部并行映射表的记录检索到所有可能受到自身干扰的两跳范围内的节点,并依次比较其与每个节点的距离值和自身传输半径之间的关系,满足条件的记录进入映射表中,在最大程度上排除受干扰节点的数量;接收端节点通过与多个发送端节点的距离比较,选取其中最小的一个进行数据通信,在解决隐藏终端问题的同时,提高数据传输的成功率。
-
公开(公告)号:CN107194468A
公开(公告)日:2017-09-22
申请号:CN201710259763.1
申请日:2017-04-19
Applicant: 哈尔滨工程大学
IPC: G06N99/00
CPC classification number: G06N20/00
Abstract: 本发明提供的是一种面向情报大数据的决策树增量学习方法。在分裂结点之前,把结点中每个候选属性的多个属性值分别合并成两组,选择信息增益最大的候选属性将结点分为两个分支。在选择下一个将要分裂的结点方面,为所有候选分裂结点计算对应的结点分裂度量值,并且总是选择结点分裂度量值最大的候选结点作为下一个分裂结点。IID5R增加了评估分类属性质量的功能。本发明将NOLCDT与IID5R相结合,提出了一个混合分类器算法HCS,主要有两个阶段组成:构建初始决策树和增量学习。根据NOLCDT建立初始决策树,然后使用IID5R进行增量学习。HCS算法综合了决策树以及增量学习方法的优点,既便于理解又适于增量学习。
-
公开(公告)号:CN106021297A
公开(公告)日:2016-10-12
申请号:CN201610289513.8
申请日:2016-05-04
Applicant: 哈尔滨工程大学
IPC: G06F17/30
CPC classification number: G06F17/30908
Abstract: 基于上下文感知和复杂语义关联的数据空间建模方法,本发明涉及数据空间建模方法。本发明的目的是为了解决现有方法存在以下缺陷:1)上下文感知性较弱;2)语义关系表达能力弱;3)语义关联推理能力弱。通过以下技术方案实现的:步骤一、构建一种半结构化图模型,称之为上下文感知的复杂语义关联网络模型COSAN;步骤二、根据上下文感知的复杂语义关联网络模型COSAN表示上下文感知的解释对象;步骤三、根据上下文感知的解释对象得出上下文感知的基本语义关联和复杂多元语义关联;步骤四、根据上下文感知的基本语义关联和复杂多元语义关联得出语义关联推理规则。本发明应用于数据空间建模领域。
-
公开(公告)号:CN105868336A
公开(公告)日:2016-08-17
申请号:CN201610182802.8
申请日:2016-03-28
Applicant: 哈尔滨工程大学
IPC: G06F17/30
Abstract: 路网中面向集合的空间关键词查询方法,属于空间关键词查询技术领域。本发明的提出是为了实现对于用户的提出的空间关键词查询能够快速返回多条最佳路线供用户选择。技术要点:本发明所提出的路网中面向集合受查询方向约束的空间关键词查询给出了两种情况,即面向无主关键词的查询和主关键词优先的查询。无主关键词的查询即从查询点出发按照道路网在可查询范围内扩展查询。主关键词优先的查询,首先在可查询范围内以一种迭代替换的方式进行扩展查询直到查询到主关键词对象,若还有关键词没有被已查询到的空间对象所覆盖,则以面向无主关键词的查询方式继续进行扩展查询。分别对以上两种查询进行了实验,证明了所提方法的有效性。
-
-
-