一种基于多尺度分析的AUV导航系统故障诊断方法

    公开(公告)号:CN110263832B

    公开(公告)日:2023-01-06

    申请号:CN201910501336.9

    申请日:2019-06-11

    Abstract: 本发明涉及AUV水下导航故障诊断技术领域,具体涉及一种基于多尺度分析的AUV导航系统故障诊断方法。步骤一:根据采样的信号,得到传感器信号序列段x(n);步骤二:根据所需求的分解层数,进行多尺度分解处理,得到各层小波系数{d1(n),d2(n),…,dk(n)}以及第k层的尺度系数ck(n);步骤三:根据多尺度分解处理得到的信号,进行单支重构处理,得到第k层的近似信号Ck以及各层细节信号{D1,D2,…Dk};步骤四:根据各层细节信号,通过多尺度熵特征提取方法,将k层多尺度特征量组成k维特征向量;步骤五:将k维特征向量作为已训练好的改进的Levenberg‑Marquardt小波神经网络的输入向量,实现故障类型识别;本发明能够定量地描述出故障在不同尺度上的表征形式,并且能够自主学习并实现AUV导航传感器故障诊断。

    基于最大熵的演员-评论家框架的AUV运动规划方法

    公开(公告)号:CN113534668A

    公开(公告)日:2021-10-22

    申请号:CN202110930108.0

    申请日:2021-08-13

    Abstract: 本发明公开了基于最大熵的演员‑评论家框架的AUV运动规划方法,包括以下步骤:S1:构建AUV操纵性模型;S2:确定AUV的状态空间与动作空间;S3:基于MDP决策过程,提出基于最大熵的强化学习算法,构建神经网络结构,搭建AUV运动规划系统;S4:设置一个综合的奖励函数来评估AUV决策的优劣,指导AUV完成运动规划任务的目标:在躲避障碍物到达目标点的同时,航行路程及所用时间达到最优;S5:通过自交互训练获得最优策略,保存训练好的神经网络参数,将最优策略对应的具体指令传递给下位机,最终实现感知‑规划‑控制的运动规划过程;本发明能够发现到达目标位置的多种策略,在应对各种突发态势时有较好的鲁棒性,且能在多约束的条件下顺利完成指定任务。

    一种基于深度强化学习的水下自主航行器动态避障方法

    公开(公告)号:CN112925319A

    公开(公告)日:2021-06-08

    申请号:CN202110098934.3

    申请日:2021-01-25

    Abstract: 一种基于深度强化学习的水下自主航行器动态避障方法,涉及水下机器人避障技术领域。本发明是为了解决目前缺乏水下自主航行器对动态障碍物的避障研究的问题。本发明建立水下自主航行器模型与运动学模型,获取周围障碍物的信息;采集水下自主航行器周围机动障碍物的运动状态信息,并构造动态障碍物状态方程;根据动态障碍物状态方程预测动态障碍物运动学模型;根据水下自主航行器周围障碍物的信息和动态障碍物运动学模型,融合多动态障碍物避障法生成避障策略并转化为MDP模型;结合确定性深度策略梯度算法对MDP模型进行训练,直至水下自主航行器能够无碰撞的到达目标区域;利用训练好的MDP模型引导水下自主航行器航行。

    一种基于多尺度分析的AUV导航系统故障诊断方法

    公开(公告)号:CN110263832A

    公开(公告)日:2019-09-20

    申请号:CN201910501336.9

    申请日:2019-06-11

    Abstract: 本发明涉及AUV水下导航故障诊断技术领域,具体涉及一种基于多尺度分析的AUV导航系统故障诊断方法。步骤一:根据采样的信号,得到传感器信号序列段x(n);步骤二:根据所需求的分解层数,进行多尺度分解处理,得到各层小波系数{d1(n),d2(n),…,dk(n)}以及第k层的尺度系数ck(n);步骤三:根据多尺度分解处理得到的信号,进行单支重构处理,得到第k层的近似信号Ck以及各层细节信号{D1,D2,…Dk};步骤四:根据各层细节信号,通过多尺度熵特征提取方法,将k层多尺度特征量组成k维特征向量;步骤五:将k维特征向量作为已训练好的改进的Levenberg-Marquardt小波神经网络的输入向量,实现故障类型识别;本发明能够定量地描述出故障在不同尺度上的表征形式,并且能够自主学习并实现AUV导航传感器故障诊断。

Patent Agency Ranking