大数据向云端迁移时的数据中心的选择方法

    公开(公告)号:CN105739929A

    公开(公告)日:2016-07-06

    申请号:CN201610067866.3

    申请日:2016-01-29

    CPC classification number: G06F3/0655

    Abstract: 本发明提出了一种大数据向云端迁移时的数据中心的选择方法,首先,考虑到因用户偏好和法律限制等因素导致DC不可用情况,进行了非完全图建模;采用激活级别的方式来描述用户的数据产生量;定义了公平数据放置FDP、优选数据放置PDP、传输成本最小化数据放置TCMDP和成本最小化数据放置CMDP等四种准则;基于上述准则进行DC的选择。本发明提出的方法针对BD向云端移动时的需求,从用户角度研究了移动机制,可以缩短数据接入时延,降低数据成本。本发明的方法可以反映DC的可用性以及用户的偏好。本发明的方法可以利用网络自动进行低成本,低延迟的数据迁移,避免采用硬件方式,有利于自动化管理的实施。

    分布式云中基于聚类的时延带宽极小化虚拟机部署方法

    公开(公告)号:CN105677447A

    公开(公告)日:2016-06-15

    申请号:CN201610067867.8

    申请日:2016-01-29

    CPC classification number: G06F9/45558 G06F2009/4557 H04L67/10

    Abstract: 本发明提出了一种分布式云计算中基于聚类的时延带宽极小化虚拟机部署方法,先选择出目标DC,保证DC之间的最长通信距离尽可能的小;然后再根据VM的通信量,对VM进行分组,保证DC间的通信带宽消耗尽可能的少。其中,DC选择采用密度聚类算法,进行非优解的剪枝,从而加快了算法速度;VM分组采用了半通信模型,实现了成批VM的分组,使得算法的速度提升近3倍。本发明的方法考虑到了分布式云计算中DC的容量相对于集中式云计算较小的特点,同时可以兼顾特定的可靠性要求,比如要求每个DC只能部署一定数量的VM,在分布式云计算中部署一组VM,进行服务质量和成本优化,实现分布式云计算中低成本,低时延,高可靠的虚拟机部署。

    一种面向移动微技的数字签名认证方法

    公开(公告)号:CN102883321A

    公开(公告)日:2013-01-16

    申请号:CN201210355297.4

    申请日:2012-09-21

    Abstract: 本发明提供了一种面向移动微技的数字签名认证方法,包括以下步骤:产生证书:开发者向认证机构中的注册机构RA提交开发者证书申请,由RA对相关内容进行审核并决定是否审批通过该证书申请的请求,通过后RA将申请请求及审批通过的信息提交给认证中心CA,由CA进行证书的签发;签名:证书申请被批准注册之后,RA端的应用程序初始化申请者的信息,给开发者颁发证书,发送私钥,CA在LDAP目录服务器中添加证书申请人的有关信息,开发者收到私钥之后,在开发平台上对编译通过的程序进行签名,上传至Web服务器;验证。本发明将公钥基础设施PKI与椭圆曲线加密机制相结合,实现了移动widget开发者的证书申请、证书颁发、证书获取、widget签名以及widget验证。

    一种基于有监督超图离散化图像二值编码方法

    公开(公告)号:CN109284411A

    公开(公告)日:2019-01-29

    申请号:CN201810402753.3

    申请日:2018-04-28

    Abstract: 本发明涉及图像数据处理领域,特别涉及一种基于有监督超图离散化图像二值编码方法。该方法包括以下步骤:S1.假设一个由n幅图像组成训练集,将训练集所有样本通过学习哈希函数映射到汉明空间的二值化哈希码;S2.定义一个线性多分类模型,采用优化函数对离散化变量进行优化,得出第一目标函数;S3.采用超图对数据哈希码之间的距离度量一致性进行约束,得出第二目标函数;S4.整合第一目标函数和第二目标函数,得到完整的目标函数,采用“位循环坐标下降方法”学习哈希码矩阵,并通过迭代运算优化目标函数。本发明既可以保持数据在原始空间相似性,又能提高检索的准确率。

    一种基于有监督多视角离散化的多媒体二值编码方法

    公开(公告)号:CN108510559A

    公开(公告)日:2018-09-07

    申请号:CN201810288688.6

    申请日:2018-03-30

    Abstract: 本发明涉及一种基于有监督多视角离散化的多媒体二值编码方法。该方法包括:S1. 假设一个由n幅图像组成训练集,通过学习得到包含一系列子函数的哈希函数,将样本的两种不同模态的特征映射到经过优化的特征空间中,得到的一系列与哈希子函数对应的哈希值,然后通过二值量化将哈希值转化为二值化哈希码:S2. 基于有监督训练的哈希函数:定义一个线性多分类模型并对模型函数进行优化,采用最小平方损失作为目标函数;S3. 基于最小量化损失的哈希函数:假设一种模态的特征,通过哈希函数优化至量化损失最小;S4. 基于多视角锚图的哈希函数:构造锚图,并采用锚图正则化哈希函数;S5. 优化算法。本发明既可以保持数据在原始空间相似性,又能提高检索的准确率。

    基于深度信息的相关滤波跟踪方法及装置

    公开(公告)号:CN107784663A

    公开(公告)日:2018-03-09

    申请号:CN201711124878.6

    申请日:2017-11-14

    Abstract: 本发明公开了一种基于深度信息的相关滤波跟踪方法及装置,其方法包括:基于深度图的图像分割技术,自适应性量化深度信息,得到深度图像分割结果;利用深度图像分割结果,根据不同场景构建相应的三维空间模型的分层结构;利用分层结构,并结合核相关滤波跟踪算法处理目标尺度变化及检测遮挡。本发明一方面过滤前景和背景信息减少跟踪的干扰因素,结合成熟的图像特征提取技术;另一方面这样的分层结构简化了深度信息的使用方法,使得处理目标尺度变化以及检测遮挡更为容易。结合核相关滤波跟踪算法实现了使用二维表观模型在空间结构下的跟踪方法,能够有效应对遮挡和处理目标尺度变化,提高视觉跟踪效果。

    基于密文数据的多用户隐私保护数据聚类方法及系统

    公开(公告)号:CN107145792A

    公开(公告)日:2017-09-08

    申请号:CN201710225047.1

    申请日:2017-04-07

    CPC classification number: G06F21/6245 G06K9/6218 H04L63/0428 H04L67/10

    Abstract: 本发明提供一种基于密文数据的多用户隐私保护数据聚类方法及系统,属于数据挖掘技术领域。本发明方法包括步骤:两个以上用户发送各自加密后的数据和聚类中心点、陷门信息给服务器;服务器计算密文数据点和聚类中心点的距离,并划分聚类;服务器将每个聚类中不同的用户的数据点分别进行相加,并将数据的总和及个数分别发送给用户;用户将收到的数据总和及个数重新加密后发送给服务器;服务器计算新的聚类中心点,并将新的聚类中心点发送给各个用户;各个用户通过外包隐私保护平均数计算协议共同计算每个聚类中数据点距离聚类中心点的平均值,然后发送给服务器,进行下次迭代。本发明大大提高了聚类效率;实现半诚实模型下的安全计算,同时可以抵抗一定程度上的合谋攻击。

    一种具有隐私保护的K‑means聚类方法及系统

    公开(公告)号:CN107145791A

    公开(公告)日:2017-09-08

    申请号:CN201710224275.7

    申请日:2017-04-07

    CPC classification number: G06F21/6245 G06K9/6223 H04L63/0428 H04L67/10

    Abstract: 本发明提供一种具有隐私保护的K‑means聚类方法及系统,属于数据挖掘技术领域。本发明包括如下步骤:数据拥有者A和B加密各自的数据和随机选择的质心点,上传至服务器;服务器通过安全乘法协议和安全距离计算协议在密文数据中计算数据点到质心点的欧氏距离,并将数据点归类;服务器、数据拥有者A和B通过安全电路协议共同在密文数据中重新计算新的质心点;数据拥有者A或B通过安全比较协议判断新的质心点与原质心点的距离,如果小于阈值,结束分类,数据拥有者A和B请求服务器将分类好的数据分别发送给数据拥有者A和B,否则,重新上传新的质心点,进行下一轮迭代。本发明在保证数据隐私安全的同时保证了数据挖掘结果的正确性;支持数据存储外包和数据计算外包,在保证正确性的同时,执行效率也大幅度提升;支持三个参与方中最多一方为恶意方的安全计算。

Patent Agency Ranking