-
公开(公告)号:CN111291890A
公开(公告)日:2020-06-16
申请号:CN202010399728.1
申请日:2020-05-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种博弈策略优化方法、系统及存储介质,该博弈策略优化方法包括建立基于最大熵的策略递度算法步骤和多智能体最优反应策略求解步骤。本发明的有益效果是:本发明采用中心化训练和分散式执行的方式,提高动作估值网络的准确性,同时引入了全局基线奖励来更准确地衡量智能体的动作收益,以此来解决人博弈中的信用分配问题。同时引入了最大熵方法来进行策略评估,平衡了策略优化过程中的探索与利用。
-
公开(公告)号:CN118114208A
公开(公告)日:2024-05-31
申请号:CN202410062504.X
申请日:2024-01-16
Applicant: 深圳市华汇数据服务有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 暨南大学
Abstract: 本发明公开了一种神经网络输出结果产权证明方法、系统和装置,该方法包括:S1、生成证明π;S2、提交证明;S3、添加记录和出示证明π;S4、检验唯一性;S5、验证证明π;该系统包括:生成证明π模块、提交证明模块、添加记录和出示证明π模块、检验唯一性模块、验证证明π模块;通过将原本用于神经网络可验证计算场景的zkCNN协议应用到神经网络输出结果的产权证明场景当中,在保证神经网络权重参数不泄露的同时,生成一份安全可靠且持久有效的证明π,从而证明某个数值或向量确实是由该神经网络计算出来的。
-
公开(公告)号:CN113052203B
公开(公告)日:2022-01-18
申请号:CN202110181592.1
申请日:2021-02-09
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种面向多种类数据的异常检测方法及装置。所述面向多种类数据的异常检测方法通过训练对抗学习网络,使对抗学习网络中的生成器拟合正常训练样本的分布以及学习正常训练样本的潜在模式,得到更新的对抗学习网络,根据训练过程中产生的重构误差构造更新的对抗学习网络中的异常评价函数,并将更新的对抗学习网络构建为异常检测模型,以利用异常检测模型对输入的检测数据进行异常检测,得到异常检测结果。本发明基于传统生成对抗学习模型的异常检测方法,通过引入模式分类器的思想,有效解决了检测数据与正常数据分布相近时异常检测难的问题,进一步提高了异常检测的准确性。
-
公开(公告)号:CN111291890B
公开(公告)日:2021-01-01
申请号:CN202010399728.1
申请日:2020-05-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种博弈策略优化方法、系统及存储介质,该博弈策略优化方法包括建立基于最大熵的策略递度算法步骤和多智能体最优反应策略求解步骤。本发明的有益效果是:本发明采用中心化训练和分散式执行的方式,提高动作估值网络的准确性,同时引入了全局基线奖励来更准确地衡量智能体的动作收益,以此来解决人博弈中的信用分配问题。同时引入了最大熵方法来进行策略评估,平衡了策略优化过程中的探索与利用。
-
公开(公告)号:CN111260040A
公开(公告)日:2020-06-09
申请号:CN202010370070.1
申请日:2020-05-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种基于内在奖励的视频游戏决策方法,包括以下步骤:S1、获取视频游戏模拟环境;S2、构建神经网络模型;S3、设计内在奖励模型;S4、将内在奖励模型与构建的神经网络模型结构结合;S5、通过模拟环境获取游戏的记录;S6、通过获取的游戏记录,更新神经网络模型;S7、循环训练神经网络模型直至收敛。本发明的有益效果是:较好的解决了三维场景中较为常见的缺乏环境反馈奖励值的问题。
-
公开(公告)号:CN118536150B
公开(公告)日:2025-02-28
申请号:CN202410488387.3
申请日:2024-04-23
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 暨南大学
IPC: G06F21/62 , G06F16/2455 , H04L9/00
Abstract: 本发明公开了一种基于同态秘密共享的隐私保护数据库JOIN类型查询方法、系统及设备,方法包括设置阶段和查询阶段,在设置阶段生成Paillier加密的公钥N、私钥d及加密私钥E(d),而后打包送至客户;在查询阶段,客户将加密的客户表发送云服务器,根据查询者指令执行查询任务;云服务器根据同态秘密共享私钥eki,将加密的客户表中的加密值Ix本地转化为秘密份额,云服务器获取各自的秘密份额表;各个云服务器根据拥有的加密的客户表和秘密份额表执行安全连接协议,分别得到连接表的秘密份额;查询者根据各连接表的秘密份额重构连接表。本发明通过结合不经意排序和同态秘密共享的特点,设计安全连接协议,避免了匹配阶段的通信开销。
-
公开(公告)号:CN119094128B
公开(公告)日:2025-02-25
申请号:CN202411570482.4
申请日:2024-11-06
Applicant: 深圳市华汇数据服务有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 暨南大学
Abstract: 本发明公开了一种基于秘密共享的隐私保护特征工程方法及系统,包括以下步骤:S100、在数据集秘密分发阶段,n个数据提供方#imgabs0#分别将各自的隐私数据特征及其标签#imgabs1#通过加法算术秘密共享分发给第一服务器S1和第二服务器S2,得到数据特征的秘密份额和数据标签的秘密份额;S200、在两方分布式运算阶段,第一服务器S1和第二服务器S2基于获得的数据特征的秘密份额和数据标签的秘密份额在密态环境分别进行安全两方分布式运算,第一服务器S1与第二服务器S2之间不共谋。本发明的技术方案能够在任何一个环节都能保证数据的隐私安全的同时兼顾计算效率,具有更强的拓展性和完整的系统。
-
公开(公告)号:CN118114208B
公开(公告)日:2025-02-11
申请号:CN202410062504.X
申请日:2024-01-16
Applicant: 深圳市华汇数据服务有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 暨南大学
Abstract: 本发明公开了一种神经网络输出结果产权证明方法、系统和装置,该方法包括:S1、生成证明π;S2、提交证明;S3、添加记录和出示证明π;S4、检验唯一性;S5、验证证明π;该系统包括:生成证明π模块、提交证明模块、添加记录和出示证明π模块、检验唯一性模块、验证证明π模块;通过将原本用于神经网络可验证计算场景的zkCNN协议应用到神经网络输出结果的产权证明场景当中,在保证神经网络权重参数不泄露的同时,生成一份安全可靠且持久有效的证明π,从而证明某个数值或向量确实是由该神经网络计算出来的。
-
公开(公告)号:CN117592527B
公开(公告)日:2024-11-26
申请号:CN202410074807.3
申请日:2024-01-18
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N3/0499 , G06N3/084 , G06F18/214 , G06F21/60
Abstract: 本发明公开了一种基于函数秘密共享的隐私保护神经网络训练方法及装置,来支持实用的安全神经网络训练,该框架具有较小的常数轮在线通信复杂度,在不降低模型精度的情况下降低离线通信成本,同时离线阶段通过使用安全两方计算友好的伪随机生成器,采用分布式比较函数密钥生成方案来取代可信第三方。本发明通过提出了具有最小密钥大小的通信优化的分布式比较函数,无需较大函数秘密共享密钥量;通过设计离线阶段,在离线阶段生成相关随机性用于在线阶段函数计算,使得在线阶段只需1轮通信即可,从而大大减少通信量。
-
公开(公告)号:CN118536150A
公开(公告)日:2024-08-23
申请号:CN202410488387.3
申请日:2024-04-23
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 暨南大学
IPC: G06F21/62 , G06F16/2455 , H04L9/00
Abstract: 本发明公开了一种基于同态秘密共享的隐私保护数据库JOIN类型查询方法、系统及设备,方法包括设置阶段和查询阶段,在设置阶段生成Paillier加密的公钥N、私钥d及加密私钥E(d),而后打包送至客户;在查询阶段,客户将加密的客户表发送云服务器,根据查询者指令执行查询任务;云服务器根据同态秘密共享私钥eki,将加密的客户表中的加密值Ix本地转化为秘密份额,云服务器获取各自的秘密份额表;各个云服务器根据拥有的加密的客户表和秘密份额表执行安全连接协议,分别得到连接表的秘密份额;查询者根据各连接表的秘密份额重构连接表。本发明通过结合不经意排序和同态秘密共享的特点,设计安全连接协议,避免了匹配阶段的通信开销。
-
-
-
-
-
-
-
-
-