-
公开(公告)号:CN118982064B
公开(公告)日:2025-03-11
申请号:CN202411473105.9
申请日:2024-10-22
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N3/098 , G06N3/0464
Abstract: 本申请公开了去中心化的联邦学习方法、系统及相关设备,涉及计算机技术领域,包括:联邦学习的组织者和参与者加入区块链;组织者将参与者划分为普通节点和委员会节点;各节点基于区块链获取联邦学习任务配置信息和待训练的全局模型并进行本地模型更新获得前一轮次训练完成后的本地模型;普通节点对前一轮次训练完成后的本地模型进行训练获得当前轮次的本地训练模型并上传至区块链;委员会节点通过区块链获取本地训练模型以确定普通节点的贡献度评分及当前轮次训练完成后的全局模型,并确定委员会节点对应的贡献度评分;响应于触发委员会节点更新事件,组织者重新进行节点身份划分。如此,有利于提高联邦学习过程中模型训练的准确性。
-
公开(公告)号:CN115499247B
公开(公告)日:2023-03-28
申请号:CN202211432463.6
申请日:2022-11-16
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 暨南大学
IPC: H04L9/40
Abstract: 本发明公开了一种基于零知识证明的属性凭证验证方法及装置,方法包括:构造属性凭证;签发属性凭证,用户向作为签发者的可信第三方提出属性凭证申请;签发者生成每个用户唯一的随机盐值,签发者对已认证的属性信息和随机盐值进行凭证签发;验证属性凭证,用户从安全信道中获取验证者所需的验证约束条件,用户使用凭证证明生成模块生成对应的零知识的属性值消息,用户将零知识的凭证证明消息通过可信信道发送给验证者;验证者在收到用户发来的凭证证明消息后对消息内容进行解析,验证凭证证明的正确性和有效性。本发明具有保护用户数据隐私和细粒度验证策略的优点,同时以比较低的交互次数和交互通信量完成凭证的签发和证明。
-
公开(公告)号:CN115200603A
公开(公告)日:2022-10-18
申请号:CN202211106644.X
申请日:2022-09-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于同态加密和匿名伪装的导航服务隐私保护方法及装置,方法包括:LBS服务商进行同态加密方案的初始化;用户利用匿名伪装算法分别生成出匿名伪装区域;用户根据匿名伪装区域的路网信息,随机选取出发点附近满足伪装距离L的出发地伪装点和目的地伪装点,同步规划出真实出发地到伪装出发地的路线;云服务商规划出一组候选路线,同时向LBS服务商请求实时路况信息;云服务商对候选路线组的开销进行进一步计算,利用全同态加密的比较运算,将密文比较结果传输给LBS服务商;从候选路线组中选取最佳路线并在本地将和伪装区域内的路线连接,生成最终的出行路线。本发明采用全同态加密和匿名伪装技术实现高质量的导航服务隐私保护。
-
公开(公告)号:CN114422606B
公开(公告)日:2022-06-28
申请号:CN202210249791.6
申请日:2022-03-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本申请公开了一种联邦学习的通信开销压缩方法、装置、设备及介质,包括:根据联邦学习中的模型参数在训练前后的变化幅度确定基本参数,并将基本参数所在的卷积核中的所有模型参数确定为待传输参数;基于卷积核的目标特征将卷积核中的待传输参数封装至不同数据包中;对不同数据包中的待传输参数进行二值量化,并对待传输参数对应的索引进行位置编码,如此一来,由于一个卷积核内所有待传输参数的位置信息都是固定的,因此一个索引可以反应整个卷积核中所有待传输参数的位置信息,一定程度上降低了索引的通信开销,同时,本申请通过对待传输参数进行量化,对待传输参数对应的索引进行位置编码,进一步减少了通信开销。
-
公开(公告)号:CN112183108B
公开(公告)日:2021-06-22
申请号:CN202010927402.1
申请日:2020-09-07
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F40/30 , G06F16/36 , G06F16/383
Abstract: 本申请涉及一种短文本主题分布的推理方法、系统、计算机设备和存储介质。该方法包括:抽取单位时间内短文本中出现的共现词对,整合共现词对获取词组集合;根据语义相似度和历史共现度对所述词组集合进行关联,获取词组集合的动态关联度,并以词组矩阵形式存储所述动态关联度;从词组集合中进行主题名称的抽取,并根据所述动态关联度修正所述主题名称;统计修正后的所述短文本中主题名称,获取所述短文本的主题分布。通过设计的动态关联度这一指标,赋予了各个共现词对不同的重要性。此外,该方法中主题名称的提取具有偏向性的主题模型,从而能够抽取出更加连续紧凑的各种主题名称,更加准确的推理出各个短文本的主题分布。
-
公开(公告)号:CN117592527B
公开(公告)日:2024-11-26
申请号:CN202410074807.3
申请日:2024-01-18
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N3/0499 , G06N3/084 , G06F18/214 , G06F21/60
Abstract: 本发明公开了一种基于函数秘密共享的隐私保护神经网络训练方法及装置,来支持实用的安全神经网络训练,该框架具有较小的常数轮在线通信复杂度,在不降低模型精度的情况下降低离线通信成本,同时离线阶段通过使用安全两方计算友好的伪随机生成器,采用分布式比较函数密钥生成方案来取代可信第三方。本发明通过提出了具有最小密钥大小的通信优化的分布式比较函数,无需较大函数秘密共享密钥量;通过设计离线阶段,在离线阶段生成相关随机性用于在线阶段函数计算,使得在线阶段只需1轮通信即可,从而大大减少通信量。
-
公开(公告)号:CN118982064A
公开(公告)日:2024-11-19
申请号:CN202411473105.9
申请日:2024-10-22
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N3/098 , G06N3/0464
Abstract: 本申请公开了去中心化的联邦学习方法、系统及相关设备,涉及计算机技术领域,包括:联邦学习的组织者和参与者加入区块链;组织者将参与者划分为普通节点和委员会节点;各节点基于区块链获取联邦学习任务配置信息和待训练的全局模型并进行本地模型更新获得前一轮次训练完成后的本地模型;普通节点对前一轮次训练完成后的本地模型进行训练获得当前轮次的本地训练模型并上传至区块链;委员会节点通过区块链获取本地训练模型以确定普通节点的贡献度评分及当前轮次训练完成后的全局模型,并确定委员会节点对应的贡献度评分;响应于触发委员会节点更新事件,组织者重新进行节点身份划分。如此,有利于提高联邦学习过程中模型训练的准确性。
-
公开(公告)号:CN115577273B
公开(公告)日:2024-04-26
申请号:CN202210970095.4
申请日:2022-08-12
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本申请公开了一种基于对比学习的单细胞数据聚类方法、装置、设备及存储介质,该方法包括:通过预先构建的特征提取模块确定待聚类单细胞数据的正视图对并提取所述正视图对的特征;通过预先构建的对比学习模型将所述特征进行对比学习,获得所述待聚类单细胞数据的高阶表示,并对所述高阶表示进行聚类分析以获得所述待聚类单细胞数据的聚类分析结果。如此,通过特征提取、对比学习获得了待聚类单细胞数据的高阶表示,解决了当前单细胞测序数据高维稀疏、种群间不平衡以及测序过程经常发生drop‑out事件的问题。
-
公开(公告)号:CN117592527A
公开(公告)日:2024-02-23
申请号:CN202410074807.3
申请日:2024-01-18
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N3/0499 , G06N3/084 , G06F18/214 , G06F21/60
Abstract: 本发明公开了一种基于函数秘密共享的隐私保护神经网络训练方法及装置,来支持实用的安全神经网络训练,该框架具有较小的常数轮在线通信复杂度,在不降低模型精度的情况下降低离线通信成本,同时离线阶段通过使用安全两方计算友好的伪随机生成器,采用分布式比较函数密钥生成方案来取代可信第三方。本发明通过提出了具有最小密钥大小的通信优化的分布式比较函数,无需较大函数秘密共享密钥量;通过设计离线阶段,在离线阶段生成相关随机性用于在线阶段函数计算,使得在线阶段只需1轮通信即可,从而大大减少通信量。
-
公开(公告)号:CN116246698A
公开(公告)日:2023-06-09
申请号:CN202211090606.X
申请日:2022-09-07
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B20/00 , G16B40/00 , G06F40/30 , G06N3/0464
Abstract: 本发明公开了一种基于神经网络的信息提取方法、装置、设备及存储介质,属于生物信息技术领域,该方法包括:本发明从预先获得的metapath实例中提取语义信息;基于注意力聚合机制对所述语义信息进行编码,获得语义注意力系数,基于所述语义注意力系数聚合邻居节点;通过非线性神经网络对所述语义信息进行学习,获得二次语义信息,将二次语义信息聚合至所述邻居节点中,获得节点嵌入;通过非线性神经网络融合多个metapath下的所述节点嵌入,获得最终节点表示。如此通过非线性神经网络二次提取metapath实例中的语义信息,充分利用了各个节点的语义信息,提升了信息提取的效果。
-
-
-
-
-
-
-
-
-