-
公开(公告)号:CN113293392B
公开(公告)日:2022-04-15
申请号:CN202011203174.X
申请日:2020-11-02
Applicant: 台州学院 , 台州市生物医化产业研究院有限公司
IPC: C25B1/04 , C25B1/55 , C25B11/053 , C25B11/091
Abstract: 本发明提供了一种氧化铁/羟基氧化钴复合光电极及其制备方法和应用,属于功能材料技术领域。本发明的制备方法包括以下步骤:将可溶性铁盐、尿素和水混合,得到混合反应液;将基底浸没于混合反应液中,加热进行第一沉淀反应,得到负载有β‑FeOOH的基底;将负载有β‑FeOOH的基底在300~500℃条件下进行煅烧,得到负载有α‑Fe2O3的基底;将可溶性钴盐溶液滴涂在负载有α‑Fe2O3的基底的表面,干燥后浸没于碱性溶液中进行第二沉淀反应,得到氧化铁/羟基氧化钴复合光电极。本发明在低温条件下焙烧制备得到α‑Fe2O3,能耗低,通过引入CoOOH可以激活惰性的α‑Fe2O3,使其具有较好的光电催化水分解活性。
-
公开(公告)号:CN114255999A
公开(公告)日:2022-03-29
申请号:CN202110250586.7
申请日:2021-03-08
Applicant: 台州学院
Abstract: 本发明涉及电极材料技术领域,提供了一种光生防腐电极材料的制备方法,本发明先在基底上生长α‑三氧化二铁薄膜,α‑三氧化二铁具有较高的太阳能‑化学能转换效率、具有合适的带隙结构,可以在可见光驱动下驱动水氧化反应、具有良好的光稳定性等优点;然后通过在铁氰化钾溶液和氯化钴溶液的交替浸渍,在α‑三氧化二铁薄膜表面引入CoFe‑PB助催化剂层,能够提高电极的导电性,进而可以提高电极材料的催化性能;并且能够有效驱动电极界面的水氧化速率,大幅提升了光生空穴的转移效率,从而抑制了光生电子‑空穴的复合,有助于光生电子在光电极基底上聚集,进而有效转移至被保护金属表面,实现了开路电位下有效光电阴极防腐。
-
公开(公告)号:CN114250472A
公开(公告)日:2022-03-29
申请号:CN202110377321.3
申请日:2021-04-08
Applicant: 台州学院
IPC: C23F13/12
Abstract: 本发明属于金属防腐技术领域,具体涉及一种BiVO4/CoP薄膜电极及其制备方法和应用。本发明将乙酸盐、次亚磷酸盐、可溶性钴盐与溶剂混合,得到混合电解质溶液,并将BiVO4光电极置于混合电解质溶液中,以BiVO4光电极为工作电极,采用三电极系统进行循环伏安电沉积,得到BiVO4/CoP薄膜电极。实施例结果表明,本发明提供的BiVO4/CoP薄膜电极载流子分离效率高,能够有效抑制光生电子‑空穴的复合,提升光生电子的寿命,具有较好的光生阴极保护效果。
-
公开(公告)号:CN113308702A
公开(公告)日:2021-08-27
申请号:CN202011146135.0
申请日:2020-10-23
Applicant: 台州学院 , 台州市生物医化产业研究院有限公司
IPC: C25B3/07 , C25B11/091 , B01J27/043 , B01J35/06 , B01J37/34 , B01J37/10 , D01F9/08 , D06M11/52 , D06M11/83
Abstract: 本发明提供了一种用于CO2还原制甲酸的光阴极材料及其制备方法,属于光电极材料技术领域。本发明通过“铁电极化”和“界面水活化”双重改性策略构建BiFeO3/ZnTe/Bi‑S复合光阴极,通过BiFeO3极化电场的电荷驱动力,Bi‑S界面的H2O、CO2吸附活化能力以及光电协同作用,实现ZnTe载流子分离和界面反应效率的最大化,从而有效降低ZnTe反应过电势,提高CO2定向转化为甲酸的选择性。
-
公开(公告)号:CN113293383A
公开(公告)日:2021-08-24
申请号:CN202011207214.8
申请日:2020-11-03
Applicant: 台州学院 , 台州市生物医化产业研究院有限公司
IPC: C23F13/14 , C23C28/04 , H01L31/0224
Abstract: 本发明提供了一种钨酸铋/羟基氧化铟复合光电极及其制备方法和应用,属于防腐材料技术领域。本发明采用热蒸发法在基底的表面沉积Bi2O3,经煅烧得到Bi2WO6光电极,再经电化学沉积法引入InOOH,有利于促进Bi2WO6光电极的载流子分离和转移,大幅降低了载流子的复合速率,最终制备得到的Bi2WO6/InOOH复合光电极对太阳能光谱具有较强的光响应,能够有效捕获可见光,且能有效加速电极界面的水氧化速率。将本发明提供的Bi2WO6/InOOH复合光电极用于碳钢防腐,能够促使光生电子在碳钢表面的有效集聚,有效提升光生电子向碳钢的注入效率,使碳钢的自腐蚀电位负移,从而增强碳钢的抗腐蚀能力。
-
公开(公告)号:CN111534835A
公开(公告)日:2020-08-14
申请号:CN202010383508.X
申请日:2020-05-08
Applicant: 台州学院
IPC: C25B11/06 , C25B1/04 , B01J23/888 , B01J37/34 , B01J37/16
Abstract: 本发明涉及一种Ni单原子/氧缺陷钨酸铜光阳极的制备方法,属于光电催化技术领域。本项目以高比表面积的一维CuWO4中空纳米纤维光阳极作为载体,采用表面缺陷工程策略,通过CuWO4表面的氧空位来锚定Co单原子电催化剂。该单原子负载过程可避免高温煅烧步骤,为Ni单原子在钨酸铜光电极表面的均匀分散提供了一种新方法,所制备的Ni单原子/氧缺陷钨酸铜光阳极可实现高活性、高稳定性水分解,在氢能制备领域具有广泛的应用前景。
-
公开(公告)号:CN111530502B
公开(公告)日:2022-09-30
申请号:CN202010382690.7
申请日:2020-05-08
Applicant: 台州学院
IPC: B01J31/22 , B01J31/26 , B01J37/16 , B01J37/08 , B01J37/10 , C25B1/23 , C25B11/095 , C23C14/08 , C23C14/24
Abstract: 本发明涉及一种ZnTe‑Mo/Mg‑MOF光阴极材料的制备方法,属于光电催化技术领域。所述的复合光电极由p型ZnTe半导体和Mo/Mg双金属MOF组成,其中ZnTe通过热蒸发沉积和液相反应法合成,可以有效吸收可见光,而Mo/Mg‑MOF能够有效捕获和活化CO2,二者协同作用,显著提高ZnTe还原CO2的电流密度,降低反应起始电位。本发明所述复合光电极材料制备过程简单,对CO2还原具有优异的活性和选择性,在光电催化领域具有较好的应用前景。
-
公开(公告)号:CN113293404A
公开(公告)日:2021-08-24
申请号:CN202011144710.3
申请日:2020-10-23
Applicant: 台州学院 , 台州市生物医化产业研究院有限公司
IPC: C25B11/087 , C25B11/077 , C25B1/04 , C25B1/55
Abstract: 本发明提供了一种异质结光阳极材料及其制备方法和应用,属于光电极材料技术领域。本发明的CuWO4/NiWO4以WO3、无机铜盐和无机镍盐通过煅烧反应一步生成,二者共用WO3作为反应的模板剂,因而CuWO4和NiWO4界面间不存在晶格不匹配问题,进而能够实现光生电荷的高效分离,极大提高光生载流子的分离效率和光电流密度。本发明中,CuWO4为n型半导体,NiWO4为p型半导体,二者能带匹配可形成有效的pn结,促进‑光生电荷在异质结界面间的电荷分离,从而显著提高光电流密度。且构造的CuWO4/NiWO4纳米异质结能够拓宽光吸收范围,进一步增加光吸收效率,对改善CuWO4的光电催化活性作用明显。
-
公开(公告)号:CN113293381A
公开(公告)日:2021-08-24
申请号:CN202011206890.3
申请日:2020-11-03
Applicant: 台州学院 , 台州市生物医化产业研究院有限公司
Abstract: 本发明提供了一种SrFeO3/Fe2O3光电极材料的制备方法,属于防腐材料技术领域。本发明提供的SrFeO3/Fe2O3光电极材料中SrFeO3与Fe2O3的接触面积大,且SrFeO3与Fe2O3两者之间能形成有效的pn结,有利于光生载流子在两界面之间的分离和传输;本发明所制备的SrFeO3/Fe2O3光电极材料能够吸收650nm以下的可见光,有效拓宽了光阳能光谱的吸收范围,增加了光生电子的产生数量,用于光生阴极防腐时,能够有效对阴极金属材料进行保护;本发明所制备的SrFeO3/Fe2O3光电极材料在碱性溶液中高度稳定,能够实现长时间下的稳定运行,从而实现对阴极材料的持续保护。
-
公开(公告)号:CN111534835B
公开(公告)日:2021-08-20
申请号:CN202010383508.X
申请日:2020-05-08
Applicant: 台州学院
IPC: C25B11/091 , C25B1/04 , C25B1/55 , B01J23/888 , B01J37/34 , B01J37/16
Abstract: 本发明涉及一种Ni单原子/氧缺陷钨酸铜光阳极的制备方法,属于光电催化技术领域。本项目以高比表面积的一维CuWO4中空纳米纤维光阳极作为载体,采用表面缺陷工程策略,通过CuWO4表面的氧空位来锚定Co单原子电催化剂。该单原子负载过程可避免高温煅烧步骤,为Ni单原子在钨酸铜光电极表面的均匀分散提供了一种新方法,所制备的Ni单原子/氧缺陷钨酸铜光阳极可实现高活性、高稳定性水分解,在氢能制备领域具有广泛的应用前景。
-
-
-
-
-
-
-
-
-