-
公开(公告)号:CN110310709A
公开(公告)日:2019-10-08
申请号:CN201910598102.0
申请日:2019-07-04
Applicant: 南京邮电大学
IPC: G16B50/50
Abstract: 本发明公开了一种基于参考序列的基因压缩方法,首先任意选取一个基因序列作为参考序列。其次,获取参考序列的小写字符和ACGT,并以二元组表示小写字符。然后,读取参考文件,获得参考文件的头部、换行信息、小写字符、N字符、碱基信息和其他字符,并将换行长度、小写字符、N字符和其他字符表示成二元组。接着,匹配参考序列和待压缩序列的小写字符二元组。最后匹配Hash值。解压缩过种采用压缩过程相反的步骤。采用本压缩方法的压缩比高,压缩速度快,而且二元组编码与基因次序无关,有利于分布式存储和分析基因序列。
-
公开(公告)号:CN110162706A
公开(公告)日:2019-08-23
申请号:CN201910431441.X
申请日:2019-05-22
Applicant: 南京邮电大学
IPC: G06F16/9535 , G06K9/62 , G06N3/04
Abstract: 本发明公开了一种基于交互数据聚类的个性化推荐方法及系统,包括构建用户项目交互特征矩阵、构建用户历史行为矩阵、使用分类器对交互矩阵P进行分类、相似用户聚类、邻近项目选择、神经网络训练、个性化推荐,本发明将用户对项目的浏览记录、用户搜索记录等历史信息与用户个人信息拼接构造用户特征,使用聚类算法对用户特征进行聚类,并在此基础上对特定用户进行个性化推荐,改进了传统矩阵分解模型的性能,将矩阵分解与多层感知机结合,对用户项目间的关系进行学习预测。提升了大数据环境下推荐的精度。
-
公开(公告)号:CN110147552A
公开(公告)日:2019-08-20
申请号:CN201910431440.5
申请日:2019-05-22
Applicant: 南京邮电大学
IPC: G06F17/27
Abstract: 本发明公开了一种基于自然语言处理的教育资源质量评价挖掘方法及系统,首先从海量教育评论数据中使用自然语言处理技术挖掘用户评价观点,以 二元组存储。其次,以 为指标结点建立。然后基于教育资源语料库通过神经网络对词向量进行训练,建立词到向量的模型。再对评价对象进行聚类,再按照floyd算法选出中心向量。接着对评价词进行聚类,生成资源评价指标树,选出的中心向量作为评价指标树的结点,最后对评价词进行情感分析并打分输出。解决了基于众筹众创的数字教育评价数据量过大,人工评价方法成本高、难度大、主观性高等问题。
-
公开(公告)号:CN116628184A
公开(公告)日:2023-08-22
申请号:CN202310540934.3
申请日:2023-05-12
Applicant: 南京邮电大学
IPC: G06F16/34 , G06F16/35 , G06F16/31 , G06F18/2321
Abstract: 本发明提供了一种基于相对熵的动态图摘要算法,包括对于初始图,首先用最小哈希值方法计算出各节点的三跳邻居特征值及特征值的杰卡德相似度,并以此作为距离对节点进行粗聚类;根据簇内节点数阈值和合并规则进行大小簇合并,然后生成超点、超边及其权重;在动态过程中,计算新增节点与各超点间最小哈希值分布的相对熵,将新点加入相对熵最小的超点;同时计算新增节点的两跳邻居节点与各超点间的相对熵,并根据相对熵调整邻居节点所属的超点。本发明得到的摘要图具有新的变化趋势和新的特征,能够减少摘要时间,节省了计算资源,避免了以往动态图摘要算法采样慢、存储空间大等缺陷,能够更好的应用于图流场景,在图处理领域有较好的应用价值。
-
公开(公告)号:CN110162591B
公开(公告)日:2022-08-19
申请号:CN201910431436.9
申请日:2019-05-22
Applicant: 南京邮电大学
IPC: G06F16/31 , G06F16/33 , G06F40/295
Abstract: 本发明公开了一种面向数字教育资源的实体对齐方法及系统,首先通过学科主题树对已有教育资源库进行学科分块,并在每个教育资源块内构建分区索引体系;然后SKE算法提取待对齐数字教育资源的知识点标签,通过索引筛选出实体对齐候选集;接着计算候选集中实体对的知识点标签相似性、属性值相似度和文本资源相似度;最后通过将计算得到的实体对相似性数据作为特征值输入构建好的决策树,判定其对齐结果。采用本方法进行数字教育资源的实体对齐,能够大幅度降低实体对齐计算复杂度,提高对齐效率;提升数字教育资源的文本相似度计算精度,从而提高实体对齐准确率。
-
公开(公告)号:CN110287638A
公开(公告)日:2019-09-27
申请号:CN201910597647.X
申请日:2019-07-04
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于kalman-RNN神经网络的飞锯寿命预测方法,首先,采集锯片磨损数据集,这为以后进行对比分析做准备。然后,对被切材料、锯片直径、锯切速度、锯切深度、锯切宽度、每齿进刀量、齿数、齿距等工艺参数进行分析,最终选择锯片直径、锯切速度、锯切深度、锯切宽度、每齿进刀量、齿数、齿距作为神经网络的输入;神经网络对应时刻输出为预测的寿命,即磨损百分比,并结合Kalman滤波技术将其和对应时刻的实际测量值进行融合、比对、更新神经网络对应时刻的输出,依此提高该算法寿命预测的精度。
-
-
-
-
-