-
公开(公告)号:CN111326744A
公开(公告)日:2020-06-23
申请号:CN201811526566.2
申请日:2018-12-13
Applicant: 南京大学 , 南京大学昆山创新研究院 , 昆山桑莱特新能源科技有限公司
Abstract: 本发明公开了一种燃料电池非铂催化剂的制备方法,包括将三聚氰胺与甲醛水溶液分散于水中,形成三羧甲基三聚氰胺树脂溶液;加入2g多孔活性碳,再加入曲拉通X-100,分散形成碳浆料;将三羧甲基三聚氰胺树脂溶液倒入碳浆料,搅拌;加入硫酸亚铁水溶液,搅拌;水浴后得到预聚产物,在真空旋转蒸发仪中干燥;将预聚产物在真空干燥箱中干燥得到复合树脂,球磨粉碎;在保护气氛围下升温并保温,再以10℃/min的速度降至200℃,随炉冷却至室温;本发明可大大增加了催化剂的活性反应面积成本低廉,同时工艺简单,适合规模化生产。
-
公开(公告)号:CN107176623B
公开(公告)日:2019-04-02
申请号:CN201710311779.2
申请日:2017-05-05
Applicant: 南京大学昆山创新研究院 , 南京大学
Abstract: 本发明公开离子自吸附BiVO4多面体的制备方法,包括以下步骤:(1)制备Au纳米颗粒,把NaBH4加入到20‑40倍质量且浓度为1mmol/L的HAuCl4溶液中后依次洗涤、干燥,得到Au纳米颗粒;(2)制备BiVO4多面体,1mmol NH4VO3和1mmol Bi(NO3)3·5H2O溶解于10‑20ml的2mol/L的硝酸水溶液中,调节溶液pH值至2,并加入0.13mmol的Au纳米颗粒,在180±20℃下进行24±6h水热反应,最后依次洗涤、干燥,得到BiVO4多面体。本发明制备条件温和,溶剂热温度低,工艺简单节能;本发明制备方法合成的BiVO4多面体具有优异的光催化分解水出氧性能。
-
公开(公告)号:CN107364836A
公开(公告)日:2017-11-21
申请号:CN201710637683.5
申请日:2017-07-31
Applicant: 南京大学 , 南京大学昆山创新研究院
IPC: C01B19/00 , H01L31/032
CPC classification number: C01B19/002 , C01P2002/72 , C01P2002/82 , C01P2004/03 , H01L31/0324
Abstract: 本发明通过同时增加Ge含量和硫硒分压制备高质量锡锗硫硒化物薄膜,其中,Ge含量为锡锗硫硒化物(M1x1M2x2Sn1-xGexS1-ySey)(M1为Cu、Ag中的一种或者两种任意比例混合,M2为Zn、Cd中的一种或者两种任意比例混合,0≤x1≤1,0≤x2≤1,0
-
公开(公告)号:CN105789373A
公开(公告)日:2016-07-20
申请号:CN201610008801.1
申请日:2016-01-07
Applicant: 南京大学 , 南京大学昆山创新研究院
IPC: H01L31/18 , H01L31/032
CPC classification number: Y02P70/521 , H01L31/18 , H01L31/0322 , H01L31/0326
Abstract: 本发明涉及一种高效光电性能铜基硫硒化物半导体薄膜,为多元铜基硫硒化物材料,化学通式为Cux1M1x2M2x3(SSe)x4,M1和M2为不同的金属元素,且分别为Zn、Sn、Ge、Si、In、Ga、Al中的一种;多元铜基硫硒化物为铜锌锡硫或CuGaS2薄膜;制备方法采用溶液?旋涂法,简单的湿度调控方法制备高效光电性能的多元铜基硫硒化物半导体薄膜。通过调控前驱体溶液所处的环境湿度使多元铜基硫硒化物的光电性能得到显著提升。此湿度调控方法操作简单,且具有通用性。
-
公开(公告)号:CN103866389B
公开(公告)日:2016-02-03
申请号:CN201410052395.X
申请日:2014-02-17
Applicant: 南京大学昆山创新研究院 , 南京大学
CPC classification number: Y02E10/542
Abstract: 在碳纤维表面合成多孔单晶TiN纳米片结构阵列制备方法,包括以下两步骤:(1)钛酸四丁酯和氟钛酸铵均匀分散在质量百分比为18±2%的盐酸水溶液中;然后加入碳纤维,在170~200℃下进行18h~36h水热反应,在碳纤维表面合成单晶TiO2纳米片阵列,最后依次洗涤、干燥;(2)将生长在碳纤维表面单晶TiO2纳米片转化成多孔单晶TiN纳米片:将制备的样品放入管式炉内,氨气气氛中升温700~900℃,氨气的流量在100~250mL/min,时间为1~2h使TiO2完全氮化成TiN;所述氟钛酸铵:钛酸四丁酯:盐酸溶液的质量比为1:2:100-300。
-
公开(公告)号:CN103413685A
公开(公告)日:2013-11-27
申请号:CN201310364114.X
申请日:2013-08-19
Applicant: 南京大学 , 南京大学昆山创新研究院
Abstract: 本发明涉及金属丝上沉积复杂微/纳分级结构氧化物的方法,步骤如下:首先将制备的微/纳分级结构氧化物和碘加入丙酮中,微波超声,分散均匀;清洗金属丝,然后用电泳沉积法将微/纳分级结构氧化物沉积到处理过的金属丝上;取出金属丝,在红外线灯下烘干;其中,微/纳分级结构氧化物:碘的质量比为2:1~5:1,电泳沉积电压为5V~30V,电泳时间30秒~30分钟;金属丝为Ti丝或不锈钢丝。本发明该方法具有操作简单、成本低廉、重复性强等特点。为提高高曲率的柔性太阳能电池的光电转换效率提供了手段。
-
公开(公告)号:CN102423809B
公开(公告)日:2013-11-20
申请号:CN201110403432.3
申请日:2011-12-07
Applicant: 南京大学 , 南京大学昆山创新研究院 , 昆山桑莱特新能源科技有限公司
Abstract: 本发明提供一种PtV/PtCr合金纳米颗粒的制备方法,其特点在于采用乙二醇作溶剂和还原剂,在表面活性剂聚乙烯吡咯烷酮的存在下,由Pt前驱体制得Pt纳米颗粒,经离心、洗涤后,再分散于水中,然后加入V或Cr的水溶性盐,经冷冻干燥得到的粉末再在氢气的还原性气氛中高温还原得到PtV或PtCr的合金纳米颗粒。本发明的方法具有Pt纳米颗粒容易从有机相中分离,合金纳米颗粒中各组分的含量能够精确控制,且操作简单、容易调节等优点。
-
公开(公告)号:CN102520394A
公开(公告)日:2012-06-27
申请号:CN201110407315.4
申请日:2011-12-09
Applicant: 南京大学 , 南京大学昆山创新研究院 , 昆山桑莱特新能源科技有限公司
IPC: G01S5/16
Abstract: 本发明公开了一种利用照明系统实现室内定位的方法,包括:在照明光源中调制入包含光源位置的编码信息,并通过光源发射的可见光发射出去;接受终端接受上述光源发射的编码信息,并将该信息进行解码。通过在常用的光源中调制如光源的位置信息,并通过自己发射的可见光发射出去,然后利用接收终端接受并解码,从而对光源所在位置进行定位,达到了无需安装外部设备,安装方便并且定位精度高、干扰小的目的。
-
公开(公告)号:CN116272988B
公开(公告)日:2024-10-29
申请号:CN202310147735.6
申请日:2023-02-22
Applicant: 江苏延长桑莱特新能源有限公司 , 南京大学 , 南京大学昆山创新研究院
Abstract: 本发明公开在二维原子级超薄纤铁矿相Ti0.91O2单层纳米片上负载高度分散的Cu单原子的制备方法,包括以下步骤:(1)将Cs2CO3及锐钛矿相TiO2按照摩尔比为1:5.3混合均匀并研磨,在800℃的马弗炉中持续热处理20小时,重复热处理过程2次,得到Cs0.7Ti1.825O4;(2)将得到的Cs0.7Ti1.825O4在1M盐酸溶液中磁力搅拌4天,每天更换盐酸溶液,离心、洗涤、冷冻干燥后得到层状结构的H0.7Ti1.825O4;(3)将得到的H0.7Ti1.825O4在0.08M的四丁基氢氧化铵溶液中振荡1周,得到Ti0.91O2单层纳米片悬浊液;(4)在30mL0.025g/L CuCl2·2H2O溶液中加入360μL乙二胺,将此溶液滴入7mL Ti0.91O2单层纳米片悬浊液中,室温磁力搅拌5小时后,离心、洗涤、冷冻干燥,得到Cu‑en/Ti0.91O2;(5)将得到的Cu‑en/Ti0.91O2放入氩气气氛的石英管中,放入预热至500℃的管式炉中,保温1分钟,将石英管取出,快速冷却至室温。由此得到了二维原子级超薄纤铁矿相Ti0.91O2单层纳米片上负载高度分散的Cu单原子结构,将其用于光催化中能取得良好的效果。
-
公开(公告)号:CN117181259A
公开(公告)日:2023-12-08
申请号:CN202311031243.7
申请日:2023-08-16
Applicant: 南京大学昆山创新研究院 , 南京大学 , 重庆科技学院
Abstract: 一种基于自旋极化调控的纳米杂化Fe/g‑C3N4制备方法,将50mg的g‑C3N4分散于50mL含5%聚乙二醇的水溶液中,超声分散10分钟,5%聚乙二醇(PEG)的水溶液先通入氩气或氮气等洗去溶解氧再加入g‑C3N4进行超声分散;再加入FeSO4.7H2O,磁力搅拌8小时;然后在混合溶液中加入过量NaBH4,搅拌30分钟,固体样品经去离子水洗涤,离心收集。将上述产物在管式炉氢氩气氛围中300℃退火2小时,由此得到纳米杂化Fe/g‑C3N4,将其用于光催化能取得良好的效果。
-
-
-
-
-
-
-
-
-