基于一维深度卷积神经网络的功率分配策略

    公开(公告)号:CN113518457A

    公开(公告)日:2021-10-19

    申请号:CN202110437441.8

    申请日:2021-04-22

    Abstract: 本发明公开了基于一维深度卷积神经网络的功率分配策略,属于通信系统领域,针对现有基于深度神经网络的功率分配算法的不足,提供一种基于一维深度卷积神经网络的功率控制策略,既能实现在线决策,又能对传统算法达到一个很好的性能逼近,其网络预测能力要优于目前的基于全连接结构的深度神经网络。本发明研究了用一维卷积神经网络替代传统算法的资源分配策略,通过监督学习的方式,学习基于传统算法得到的功率分配效果,实现快速可靠的在线决策,与传统的基于深度学习的功率分配算法相比,克服了学习能力有限的缺点,其预测能力更高。

    一种基于集成神经网络的终端设备传输功率的控制方法

    公开(公告)号:CN112153617A

    公开(公告)日:2020-12-29

    申请号:CN202010964851.3

    申请日:2020-09-15

    Abstract: 本发明公开一种基于集成神经网络的终端设备传输功率的控制方法,收集D2D链路的信道功率增益样本;并输入到SPCA算法,得到相应样本下的最优功率分配策略;搭建深度神经网络和卷积神经网络,并初始化神经网络权重;将训练数据集输入至神经网络,构建神经网络的输出和标签之间的MSE作为损失函数,并对神经网络的权重进行更新;当损失函数小于预设值或达到迭代次数时即认为神经网络训练完成,保存神经网络;构建选择器,选择并输出具有更高性能的分配策略。本发明克服了深度神经网络对大规模网络学习能力弱和卷积神经网络对小规模网络的局部特征提取的有限性,用集成学习的思想,将两个网络集成起来,使其能适应不同规模网络实时的功率分配需求。

Patent Agency Ranking