-
公开(公告)号:CN113724280A
公开(公告)日:2021-11-30
申请号:CN202111077956.8
申请日:2021-09-15
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种地面天气图高压系统的自动识别方法,包括步骤S1:基于二阈值,查找地面天气图中的高压中心候选点;步骤S2:基于三角网格插值法对地面天气图绘制等值线;步骤S3:确定地面天气图中的高压系统及高压中心。本发明基于最外围闭合等值线客观识别地面高压,降低地面高压的自动识别不确定性,客观准确地刻画高压系统的二维结构特征,为业务预报提高准确性提供帮助,实现了地面高压业务分析自动化,具有重要的现实意义。
-
公开(公告)号:CN112765832A
公开(公告)日:2021-05-07
申请号:CN202110141345.9
申请日:2021-02-02
Applicant: 南京信息工程大学
Abstract: 本发明提供了一种欧亚大陆冷锋自动识别订正方法,包括:S10获得气象参数;S20获得初始锋面复选点;S30自动识别的初始冷锋数据集;S40获得冷锋订正范围;S50计算同一纬度上西北风的风向转变度数;S60将所述风向转变度数大于0的格点定义为具有西北风逆转特征的格点,筛选其中最东侧、最南侧的点,记为订正锋面复选点;S70将所述订正锋面复选点进行拟合平滑,得到订正后的地面冷锋数据集。本发明的一种欧亚大陆冷锋自动识别订正方法,依次通过确定高空冷锋锋区、初始锋面复选点以及订正锋面复选点的设计思路,能够实现锋面的自动识别,在一定程度上消除了人工分析锋面的主观性,并对天气预报业务工作中的锋面分析自动化做出积极贡献。
-
公开(公告)号:CN118447256A
公开(公告)日:2024-08-06
申请号:CN202410903539.1
申请日:2024-07-08
Applicant: 南京信息工程大学
IPC: G06V10/26 , G06V10/764 , G06V10/82 , G06V20/70 , G06N3/045 , G06N3/0895 , G06N3/094 , G06V10/774
Abstract: 本发明公开了一种基于强弱一致性的半监督对抗互训练语义分割方法,包括以下步骤:(1)获取开源网站Pascal VOC2012数据集体并进行预处理;(2)构建基于改进的deeplabV3+差异特征一致性融合伪标签分支监督分割网络并进行训练,包括:快速增强网络和重度增广网络;(3)输出分割图;本发明使用互训练的思想构建了一个基于强弱一致性的对抗联合训练架构方法,用于半监督语义分割,不仅拥有很好的端对端训练,而且在训练中使用了互训练的方法,两个分支相互监督避免了确认偏差的影响,且特征对抗的思想更是强制让模型拥有更强的泛化能力,强弱一致性也让模型能够在图像包含较少有效信息的情况下有很好的性能。
-
公开(公告)号:CN117853949A
公开(公告)日:2024-04-09
申请号:CN202410256898.2
申请日:2024-03-07
Applicant: 南京信息工程大学
Abstract: 一种使用卫星云图识别冷锋的深度学习方法、系统,该方法包括获取气象数据,计算850hPa温度平流,绘制卫星云图和气象要素图;对卫星云图进行预处理;使用预处理云图、海平面气压图和850hPa温度平流图制作用于识别冷锋的RGB图像;利用气象数据、850hPa温度平流和预处理云图,制作冷锋标签集;将RGB图像数据集和冷锋标签集输入到DETR模型中进行训练并测试,获得冷锋的识别结果。本发明得到了较好的自动化识别结果,实现了直接从图像中识别冷锋,有益于现代化天气预报业务中结合卫星云图识别冷锋的自动化,且能够提高冷锋位置和形态识别的准确性,为预报业务提供参考。
-
-
公开(公告)号:CN117233870B
公开(公告)日:2024-01-23
申请号:CN202311518550.8
申请日:2023-11-15
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G01W1/10 , G06F30/27 , G06F18/214 , G06F119/02
Abstract: 本发明公开了一种基于多气象要素的短临降水集合预报及降尺度方法,包括以下步骤:(1)收集自动气象站逐10分钟站点观测数据;生成格点场数据(2)基于格点场数据,建立用于深度学习模型训练的标准气象序列数据集,并进行归一化处理;(3)构建耦合卷积神经网络‑循环神经网络‑对抗生成神经网络的深度学习模型,利用标准气象序列数据集针对降水进行训练,并通过在网络中增加噪声,生成集合预报;(4)利用超分辨率对生成的降水预报进行降尺度,获得高时空分辨率的短临降水集合预报;本发明将卷积神经网络、循环神经网络与对抗生成神经网络结合,提高了模型的预报真实性;利用超分辨率技术,提高降水预报准确率。
-
公开(公告)号:CN117237677A
公开(公告)日:2023-12-15
申请号:CN202311518546.1
申请日:2023-11-15
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G06V10/74 , G01W1/10 , G06N3/0464 , G06N3/0475 , G06N3/094 , G06N3/0455 , G06T7/62 , G06T7/60 , G06T7/73
Abstract: 本发明公开了一种基于深度学习的强降水空间整体相似度的降水预报订正方法,包括以下步骤:(1)利用YOLOv5对降水属性进行识别;(2)建立基于GAN的降水预报订正模型;(3)建立基于GAN且融合降水空间特征的强降水订正模型O‑GAN;(4)将测试期的数值模式预报数据代入模型O‑GAN,生成后处理之后的降水预报;本发明有效提高了传统仅优化逐点误差模型的订正技巧;实现了从降水图片到降水雨团空间属性的“端到端”输出,提高客观识别效率;避免了传统逐点订正模型可能出现的预报模糊化问题,同时能够有效捕捉强降水特征,提高降水预报准确率。
-
公开(公告)号:CN117233870A
公开(公告)日:2023-12-15
申请号:CN202311518550.8
申请日:2023-11-15
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G01W1/10 , G06F30/27 , G06F18/214 , G06F119/02
Abstract: 本发明公开了一种基于多气象要素的短临降水集合预报及降尺度方法,包括以下步骤:(1)收集自动气象站逐10分钟站点观测数据;生成格点场数据(2)基于格点场数据,建立用于深度学习模型训练的标准气象序列数据集,并进行归一化处理;(3)构建耦合卷积神经网络‑循环神经网络‑对抗生成神经网络的深度学习模型,利用标准气象序列数据集针对降水进行训练,并通过在网络中增加噪声,生成集合预报;(4)利用超分辨率对生成的降水预报进行降尺度,获得高时空分辨率的短临降水集合预报;本发明将卷积神经网络、循环神经网络与对抗生成神经网络结合,提高了模型的预报真实性;利用超分辨率技术,提高降水预报准确率。
-
公开(公告)号:CN114200548B
公开(公告)日:2023-07-18
申请号:CN202111534819.2
申请日:2021-12-15
Applicant: 南京信息工程大学
Abstract: 本发明公开了基于SE‑Resnet模型的延伸期气象要素预报方法,涉及气象预报技术领域,包括以下步骤:采集气象要素,气象要素用于生成具有时效性的ISO低频分量,其中,ISO低频分量表示季节内振荡低频分量;获取提取规则集,提取规则集用于表示气象要素生成ISO低频分量需要使用的规则;根据气象要素和提取规则集,生成ISO低频分量;将ISO低频分量作为输入数据,训练SE‑Resnet模型,获得气象要素在延伸期的要素场,其中,要素场用于表示气象特征;本发明提升了技术的准确度,并为解决气象难点、热点问题的提供了新的思路。
-
公开(公告)号:CN114200548A
公开(公告)日:2022-03-18
申请号:CN202111534819.2
申请日:2021-12-15
Applicant: 南京信息工程大学
Abstract: 本发明公开了基于SE‑Resnet模型的延伸期气象要素预报方法,涉及气象预报技术领域,包括以下步骤:采集气象要素,气象要素用于生成具有时效性的ISO低频分量,其中,ISO低频分量表示季节内振荡低频分量;获取提取规则集,提取规则集用于表示气象要素生成ISO低频分量需要使用的规则;根据气象要素和提取规则集,生成ISO低频分量;将ISO低频分量作为输入数据,训练SE‑Resnet模型,获得气象要素在延伸期的要素场,其中,要素场用于表示气象特征;本发明提升了技术的准确度,并为解决气象难点、热点问题的提供了新的思路。
-
-
-
-
-
-
-
-
-