-
公开(公告)号:CN110923573A
公开(公告)日:2020-03-27
申请号:CN201911188525.1
申请日:2019-11-28
Applicant: 北京科技大学
IPC: C22C38/02 , C22C38/04 , C22C38/44 , C22C38/46 , C22C38/48 , C22C38/50 , C22C38/58 , C21C7/00 , C21C7/10 , C21D6/00 , C22B9/18 , C22C33/04 , C21D8/02
Abstract: 本发明提供了一种采用高热稳定性的原位纳米相强化高强韧钢及其制备方法,所述高强韧钢微观组织结构为回火马氏体以及弥散分布于基体中的纳米尺寸的氧化物-碳化物复合原位纳米相,真空熔炼后采用喂丝的方式添加钛并通过电渣重熔获得目标成分设计范围的铸锭,并且在铸锭中含有大量的高熔点氧化钛原位纳米相,经过热轧和调质热处理获得具有高热稳定性的氧化物-碳化物复合原位纳米相增强高强韧钢。本发明可以放宽调质热处理工艺窗口,获得具有高热稳定性的原位纳米相强化高强韧钢。
-
公开(公告)号:CN110863140A
公开(公告)日:2020-03-06
申请号:CN201911074448.7
申请日:2019-11-06
Applicant: 北京科技大学
Abstract: 一种低合金超高强度结构钢及制备方法,属于合金结构钢技术领域。其化学成分的质量百分比为:C:0.40~0.5%,Si:1.5~2.0%,Mn:0.5~1.0%,Cr:1.5~2.0%,Mo:0.2~0.6%,Ni≤0.05%,V≤0.05%,Nb≤0.02%,Cu≤0.05%,P≤0.02%,S≤0.03%,余量:Fe。制备工艺包括冶炼工艺、锻造工艺和热处理工艺。锻造采用三向锻造工艺进行锻造;先将铸锭加热到1150~1200℃保温2~2.5小时,始锻温度为1150±10℃,Z向墩粗至一半;再回炉加热温度为1050±10℃,X向墩粗至一半;再回炉加热温度为1000±10℃,Y向墩粗至一半,长宽互换。最后再按产品要求锻造或滚圆至相应尺寸的板坯或棒材;上述工序的终锻温度≥850℃;本发明的钢合金种类少,合金成分含量低,制备工艺简单,大幅降低使用成本,其力学性能满足国家标准的要求,具有重要的推广应用价值。
-
公开(公告)号:CN105694820B
公开(公告)日:2019-07-09
申请号:CN201610140102.2
申请日:2016-03-11
Applicant: 北京科技大学
IPC: C09K5/06
Abstract: 本发明属于纳米复合材料和复合相变材料领域,具体涉及一种金属有机骨架基复合相变材料的制备方法。具体方案首先选择合适的金属盐、配体以及无机相变材料基材,根据芯材的种类对金属有机骨架进行孔径孔道大小的设计和调控,以更好的匹配所要负载的相变芯材;将金属盐、配体、无机相变材料及添加剂进行共混,密封保温一段时间后,补充适当的水分,便得到水合盐‑金属有机骨架复合相变材料。本发明的优点在于:所制备的复合相变材料,不但能够提高复合相变材料的热存储性能,而且可以有效避免相变相分离和过冷度等问题;用本发明制备的复合相变材料传热性能优异、循环稳定性好;该复合相变材料制备过程工艺简单,一步完成,无副产物,无需后处理,适合规模化生产。
-
公开(公告)号:CN105602530B
公开(公告)日:2019-06-21
申请号:CN201610069260.3
申请日:2016-02-01
Applicant: 北京科技大学
IPC: C09K5/06
Abstract: 本发明属于复合相变材料领域,具体涉及一种有机凝胶复合相变材料的制备方法。其制备方法首先制备一种共价有机凝胶载体,根据芯材的大小和种类选择不同的配体,以更好的匹配所要负载的相变芯材;采用溶液浸渍法,将配置好的相变芯材溶液分散于有机凝胶载体材料,利用凝胶孔道的作用力吸附相变芯材,在较高温度下除去溶剂,得到共价有机凝胶复合相变材料。本发明的优点在于:1)开发一种新型有机凝胶复合相变材料;2)所制备的复合相变材料不但可以有效避免相变芯材泄露的问题,而且芯材选材广泛,储能密度高;适合不同温度区间储能及控温,应用范围广;3)用本发明制备的复合相变材料传热性能优异、循环稳定性好、工艺简单、适合规模化生产。
-
公开(公告)号:CN104907095B
公开(公告)日:2018-07-27
申请号:CN201510188869.8
申请日:2015-04-20
Applicant: 北京科技大学
Abstract: 种催化氧化用多功能集成多孔基固态材料的制备方法,属于复合材料领域。首先制备得到具有碱性功能或可修饰碱性的有机配体,进而将其与具有催化活性的过渡金属源进行水热/共沉淀反应,得到多催化功能集成的金属有机骨架催化材料,并首次将其应用于以分子氧为氧源的苄基氧化、醇氧化体系中。本发明开发了种多功能集成催化材料制备的方法;所制备的催化材料有效的将催化活性中心与碱性功能集成,解决了绿色分子氧氧源难以激活的问题,以及避免因催化体系需额外借助均相有机碱实现C‑H键脱H过程中造成的难以回收、污染严重等问题;首次将该催多功能集成化材料应用于以分子氧为氧源的催化氧化体系,实现了无碱条件下高效催化氧化体系的建立。
-
公开(公告)号:CN105214727B
公开(公告)日:2017-12-01
申请号:CN201410286213.5
申请日:2014-06-24
Applicant: 中国石油天然气集团公司 , 北京科技大学
Abstract: 本发明提供了一种哑铃形聚苯乙烯基CuBTC复合催化剂及其制备方法。该制备方法包括以经过磺化处理的哑铃形聚苯乙烯微球为载体,循环负载铜盐和均苯三甲酸,制备得到哑铃形聚苯乙烯基CuBTC复合催化剂的步骤。本发明还提供了上述方法制备得到的哑铃形聚苯乙烯基CuBTC复合催化剂。本发明首次成功合成了哑铃形PS@CuBTC复合微球,具有较大的比表面积、良好的分散性以及细小的纳米级活性组分CuBTC壳层,该复合材料具有催化活性高、比表面积大、活性组分CuBTC分散性好且其粒径以及壳层厚度可调节等优势。此外,该制备方法简单、反应条件温和、能耗较少,适于放大生产及推广应用。
-
公开(公告)号:CN104772088A
公开(公告)日:2015-07-15
申请号:CN201510154457.2
申请日:2015-04-02
Applicant: 北京科技大学
Abstract: 一种无模板共价有机骨架空心微球聚合物的制备方法,属于无机非金属材料领域。首先将有机醛配体和胺配体加入到溶剂中,溶解分散后再加入一定量的助剂,通过控制反应温度,配体浓度,反应时间得到固体沉淀。经过过滤,水洗,干燥制得共价有机骨架空心微球。本发明反应体系中配体种类,反应时间,反应温度以及溶剂共同决定了共价有机骨架空心微球的结构特征。本发明的优点在于,拓展了直接合成法在COFs合成中的应用,获得了该类聚合物的空心形貌;制备的空心微球具有很大的孔隙率,可以达到85%,并可以通过调节体系中的反应条件对球壳的厚度及表面极性进行控制;本发明提供的方法反应工艺简单、收率高,条件温和、流程短,适合工业化生产。
-
公开(公告)号:CN104745149A
公开(公告)日:2015-07-01
申请号:CN201510097314.2
申请日:2015-03-05
Applicant: 北京科技大学
IPC: C09K5/06
Abstract: 一种含碳材料金属有机骨架基复合相变材料的制备方法,属于纳米复合材料和复合相变材料领域。首先采用水热法,在聚乙烯吡咯烷酮(PVP)修饰的碳材料表面原位生长MOFs颗粒,制备出含碳材料金属有机骨架基多孔载体材料。然后采用溶液浸渍法,将碳材料@MOFs多孔载体材料分散于配制好的含有相变芯材的溶液中,利用金属有机骨架材料的超大比表面积和纳米孔道结构吸附相变芯材,在高于相变温度下,干燥得到含碳材料金属有机骨架基复合相变材料。本发明材料能够提高复合相变材料的传热性能、有效防止芯材泄露且具有芯材选择范围广等优势;用本发明提供的方法制备的复合相变材料传热性能优异、循环稳定性好、工艺简单、适合规模化生产。
-
公开(公告)号:CN114260421B
公开(公告)日:2023-03-21
申请号:CN202111614155.0
申请日:2021-12-27
Applicant: 北京科技大学
Abstract: 本发明公开了一种带混匀功能的铸模装置,主要涉及热作钢技术领域。包括底座台,所述底座台上基于电力驱动控制转动连接有转速控制在30转/分以下的转动套,转动套的内部设有衬套,衬套内设置圆柱形的型腔,转动套的一侧设有可以转动的转动轴,转动轴的中央设有与其固定连接的滑动套,滑动套内贯穿有与其滑动配合的气管,气管的顶端设有氩气气源接头。本发明的有益效果在于:它能实现钢液进入型腔后的内外、上下的很好的混匀,从而快速均衡型腔内溶体温度,实现温度一致。
-
公开(公告)号:CN113684428A
公开(公告)日:2021-11-23
申请号:CN202110808489.5
申请日:2021-07-16
Applicant: 北京科技大学
IPC: C22C38/52 , C22C38/50 , C22C38/46 , C22C38/02 , C22C38/04 , C22C38/48 , C22C38/44 , C22C38/06 , C21D8/02
Abstract: 一种提高原位纳米颗粒增强超高强度钢冲击功的热处理方法,属于金属材料领域.热处理步骤为:1、将热轧后的钢板置于热处理炉中进行保温,炉温800‑900℃,保温10‑40分钟,取出钢板水冷至室温。2、将钢板置于热处理炉中进行保温,炉温350‑600℃,保温1‑3小时,取出钢板油冷至室温。3、将钢板置于热处理炉中进行保温,炉温200‑300℃,保温1‑3小时,取出钢板空冷至室温。本发明针对原位纳米颗粒增强超高强度钢,在不改变合金成分和熔炼工艺的基础上,发明了新的热处理方法,相较于传统的淬火+回火的热处理方法,提高了原位纳米颗粒增强超高强度钢的冲击功。
-
-
-
-
-
-
-
-
-