-
公开(公告)号:CN115827170A
公开(公告)日:2023-03-21
申请号:CN202310123062.0
申请日:2023-02-16
Applicant: 之江实验室
IPC: G06F9/455
Abstract: 本发明公开了基于离散事件的计算机体系结构的并行仿真方法及装置,将待仿真的计算机体系结构,按功能与延迟划分与组合成多个关键节点,并给每个关键节点分配一个线程;所有事件队列中的事件,按照事件发生的时间进行排序,时间相同的事件,按照优先级高低进行排序,整个仿真过程共同维护一条共享时间轴;利用前瞻量与路障事件对所有关键节点进行同步。在避免因果关系错误的条件下利用现代计算机的并行计算能力加速仿真过程。本发明将待仿真体系结构系统按功能与延迟划分与组合成多个关键节点,其中划分模块有利于提高仿真系统的并行度,合并低延迟模块有助于扩大前瞻量,降低同步开销,合理的关键节点选择能进一步加速仿真过程。
-
公开(公告)号:CN114332545B
公开(公告)日:2022-08-05
申请号:CN202210261211.5
申请日:2022-03-17
Applicant: 之江实验室
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/04
Abstract: 本发明提供一种基于低比特脉冲神经网络的图像数据分类方法和装置,该方法包括:步骤一,获取开源图像数据集,分为训练集和测试集,其中数据集包括计算机图像数据和神经形态数据;步骤二,构建包含隐含层的脉冲神经网络模型,再改进LIF神经元,构建基于改进后的LIF神经元的脉冲神经网络模型;步骤三,通过构建训练损失函数并进行各项梯度求解,对脉冲神经网络模型进行训练;步骤四,在训练集上使用梯度下降参数更新方法进行脉冲神经网络模型优化训练;步骤五,利用构建并训练好的脉冲神经网络模型,对测试集进行识别,得到预测的数据分类标签,实现分类任务。本发明的方法具有更低的功耗,同时与全精度网络模型有近似的准确率。
-
公开(公告)号:CN113869504B
公开(公告)日:2022-08-05
申请号:CN202111456235.8
申请日:2021-12-02
Applicant: 之江实验室
Abstract: 本发明属于新型智能计算处理器领域,涉及一种基于忆阻器可编程神经网络加速器,通过接口与SOC总线串接,该加速器包括:指令处理模块、控制单元、执行单元模块,其中,控制单元控制连接指令处理模块和执行单元模块,指令处理模块由指令存储器、取指令单元、指令译码单元依次连接组成为一体,对指令进行存取译码后,将指令信息传达给控制单元,以及将指令上的数据给到执行单元模块,执行单元模块包括:算术逻辑单元、向量处理单元、数据存储器和忆阻器存算单元;算术逻辑单元和向量处理单元,分别对应负责寄存器计算和向量计算;数据存储器与忆阻器存算单元相连后,接入向量处理单元。本发明具有高灵活度,低带宽要求,低功耗,高并行度的优点。
-
公开(公告)号:CN114399037B
公开(公告)日:2022-07-15
申请号:CN202210293602.5
申请日:2022-03-24
Applicant: 之江实验室
Abstract: 本发明公开了基于忆阻器的卷积神经网络加速器核心的模拟方法及装置,支持除常见的正负权值映射形式外还支持补码形式的RRAM权重映射,通过将RRAM核心与外围电路抽象成各个模块并将位移寄存器与RRAM的卷积过程封装成更粗粒度的事务,在保证模型功能与精度的前提下简化芯片上外围数字电路的模型结构。本发明利用高级语言搭建RRAM核心的TLM模型,支持模拟RRAM核心的功耗、延迟、算力、面积等关键参数,比传统RTL模型仿真速度快1000倍以上,帮助芯片设计人员在芯片RTL模型完成前对芯片特性进行研究,缩短芯片的研发周期。
-
公开(公告)号:CN114463161A
公开(公告)日:2022-05-10
申请号:CN202210377006.5
申请日:2022-04-12
Applicant: 之江实验室
Abstract: 本发明涉及忆阻器应用技术领域,尤其涉及一种基于忆阻器的神经网络处理连续图像的方法和装置,该方法包括以下步骤:步骤一,对神经网络的每一层进行阵列映射,并对阵列上的计算核进行串并行排列;步骤二,将单张图像输入经过步骤一设置的神经网络,统计出神经网络的每一层的图像处理时间,得到神经网络对单张图像处理的总时长,后选取出处理时间最长的神经网络层并得到其对应的处理时长,根据总时长和单层神经网络最长处理时长,得到神经网络的最大并行图像数量;步骤三,输入小于或等于最大并行图像数量的图像至经过步骤一设置的神经网络,进行并行处理。本发明加快了忆阻器上深度神经网络处理大量或者连续图像的效率。
-
公开(公告)号:CN114399037A
公开(公告)日:2022-04-26
申请号:CN202210293602.5
申请日:2022-03-24
Applicant: 之江实验室
Abstract: 本发明公开了基于忆阻器的卷积神经网络加速器核心的模拟方法及装置,支持除常见的正负权值映射形式外还支持补码形式的RRAM权重映射,通过将RRAM核心与外围电路抽象成各个模块并将位移寄存器与RRAM的卷积过程封装成更粗粒度的事务,在保证模型功能与精度的前提下简化芯片上外围数字电路的模型结构。本发明利用高级语言搭建RRAM核心的TLM模型,支持模拟RRAM核心的功耗、延迟、算力、面积等关键参数,比传统RTL模型仿真速度快1000倍以上,帮助芯片设计人员在芯片RTL模型完成前对芯片特性进行研究,缩短芯片的研发周期。
-
公开(公告)号:CN113870921B
公开(公告)日:2022-03-18
申请号:CN202111456209.5
申请日:2021-12-02
Applicant: 之江实验室
IPC: G11C13/00
Abstract: 本发明公开了一种忆阻器阵列上符号数映射方法,该映射方法将有符号数以补码的表达形式直接映射在忆阻器阵列上,并依据不同映射数的位宽以及忆阻器精度获得映射方案。首先,需要确认当前忆阻器类型器件为二值还是多值,如果是多值器件需再确认单元精度;然后,确定所映射符号数的位宽,并将符号数转为补码形式下的二进制数;最后,得出该符号数映射方案。本发明适用于神经网络计算,该方法映射符号数所占用忆阻器资源消耗小,通用性强,数值覆盖范围和实际表达范围一样。
-
公开(公告)号:CN119232243B
公开(公告)日:2025-04-29
申请号:CN202411734447.1
申请日:2024-11-29
Applicant: 之江实验室
IPC: H04B7/185
Abstract: 本发明公开了一种适用于天基分布式操作系统的分布式任务调度方法和系统,该方法包括:通过天基系统中集成的分布式通信跟踪系统实时监测并采集星载算力单元与其他算力单元间通信链路的网络通信数据,并同步到地面控制系统中;部署于地面控制系统的分布式任务调度器对网络通信数据进行分析,为分布式任务选择最优的卫星或星载算力单元组合进行调度;通过部署在星载算力单元的重调度器为已运行分布式任务进行异常情况时的重调度。本发明能够在复杂的天基系统环境中,智能化地为分布式任务选择通信质量最佳的算力单元组合,确保分布式任务之间信息交互的高效流通,提高了数据交换的准确度与可靠性,为天基计算任务的连续性与稳定性提供强有力的支撑。
-
公开(公告)号:CN115576328A
公开(公告)日:2023-01-06
申请号:CN202211421109.3
申请日:2022-11-15
Applicant: 之江实验室
IPC: G05D1/02
Abstract: 本发明公开了基于模糊控制器的机器人导航避障方法及装置,通过采集机器人激光雷达和里程计两种传感器的信息作为模糊控制器输入,建立两套知识库和模糊推理规则,得到第一模糊控制器的输出为机器人运动的线速度和角速度,第二模糊控制器的输出为导航和避障两个任务的权重值,用于权衡机器人的导航和避障这两个任务。本发明中除了模糊控制理论外不需要其他人工智能算法的辅助,不需要预先构建地图,不需要大量的数据库和训练集,即可实现机器人在未知的、动态的复杂环境中避障导航的功能。基于人类知识和语言设计的策略,易于理解、实时性高、鲁棒性强。
-
公开(公告)号:CN115429293A
公开(公告)日:2022-12-06
申请号:CN202211373110.3
申请日:2022-11-04
Applicant: 之江实验室
Abstract: 本发明公开一种基于脉冲神经网络的睡眠类型分类方法和装置,该方法包括:步骤一,获取开源睡眠脑电图数据集;步骤二,将数据集中脑电图信号分割成多个第一片段信号,删除不需要的第一片段信号,并归一化剩余的第一片段信号;步骤三,分割归一化后的第一片段信号,得到第二片段信号;步骤四,将每一个第二片段信号进行事件编码,获得第二片段事件信号,并分为训练集和测试集;步骤五,构建脉冲神经网络模型及其损失函数进行各项参数梯度求解;步骤六,在训练集上进行脉冲神经网络模型优化训练,利用训练好的脉冲神经网络模型对测试集进行识别,实现睡眠类型分类。本发明相比传统神经网络分类检测具有计算量更少、更节能的优点。
-
-
-
-
-
-
-
-
-