-
公开(公告)号:CN105608107A
公开(公告)日:2016-05-25
申请号:CN201510744625.3
申请日:2015-11-05
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
CPC classification number: G06F17/30905
Abstract: 本发明公开了一种基于舆情大数据的视觉展示方法。获取舆情大数据的数据变化值;确定用于显示所述数据的变化值的时间长度;根据所述数据的变化值和时间长度,确定所述立体模型的变化速度。本发明能够形象地展示数据的变化值和变化速度,从而将数据的变化以视觉变化来展现,增强了使用者和浏览的用户的视觉体验。
-
公开(公告)号:CN115225304B
公开(公告)日:2023-05-05
申请号:CN202210295287.X
申请日:2022-03-24
Applicant: 国家计算机网络与信息安全管理中心 , 北京信息科技大学
IPC: H04L9/40 , H04L41/147 , G06N7/01
Abstract: 本发明涉及一种基于概率图模型的网络攻击路径预测方法及系统,其方法包括:S1:获取已有的网络安全知识图谱,利用表示学习将网络实体节点转换为向量,计算向量在欧式空间中的相似度作为网络实体节点状态转移概率;其中网络实体节点包括:APT组织、威胁指标、安全漏洞和网络资产;S2:利用贝叶斯网络,基于网络实体节点状态转移概率,计算网络实体节点的联合概率分布,选择联合概率最大的攻击链路作为最可信的网络攻击路径。本发明提供的方法,构建网络安全实体之间的关系图谱,解决了因多源异构网络安全实体难以建模的难题,极大地提高了预测APT潜在攻击路径的能力。
-
公开(公告)号:CN111737551B
公开(公告)日:2022-08-05
申请号:CN202010452949.0
申请日:2020-05-26
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/953 , G06F16/951 , G06N3/08 , G06N3/04
Abstract: 本发明公开一种基于异构图注意力神经网络的暗网线索检测方法:步骤一、对暗网进行文本采集;步骤二、针对采集到的暗网文本信息,进行事件标题、关键词及实体提取,构建动态异构信息网络;步骤三、对构建的异构信息网络中的节点进行embedding处理,并得到各节点的特征向量;步骤四、对异构信息网络的图结构进行学习;步骤五、根据对异构信息网络的图结构学习得到的结果,对异构信息网络中的节点进行线索类别分类,从而完成对暗网信息的线索检测。本发明利用了外部知识库作为依托,并且采用了两套方法来对构建的异构信息网络的图结构进行学习,具有良好的线索检测效果。
-
公开(公告)号:CN111832622A
公开(公告)日:2020-10-27
申请号:CN202010531569.6
申请日:2020-06-11
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
Abstract: 本发明提出一种特定人物丑化图片识别方法和系统,包括:获取包含特定人物的图片集,该图片集包括多张漫画和多张照片,该图片集中每张图片标有代表是否丑化的预设标签,以该图片集中漫画和照片分别作为训练数据,训练卷积神经网络模型,得到特定人物漫画识别网络和特定人物照片识别网络;通过前置网络判断待识别图片是否属于漫画,若是,则将该待识别图片发送至该特定人物漫画识别网络,得到该待识别图片的特定人物丑化图片识别结果,否则对该待识别图片进行人脸对比,判断该待识别图片是否包括该特定人物,若是则通过该特定人物照片识别网络,得到该待识别图片的特定人物丑化图片识别结果,否则得到该待识别图片不包括该特定人物的识别结果。
-
公开(公告)号:CN111832621A
公开(公告)日:2020-10-27
申请号:CN202010531567.7
申请日:2020-06-11
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
Abstract: 本发明提出一种基于稠密多路卷积网络的图片分类方法和系统,包括:构建由分组、变换、聚合构成的基本单元,基于该基本单元构建新的稠密模块,将密集连接的卷积DenseNet网络网络框架中原始稠密模块替换为该新稠密模块,得到稠密多路卷积网络;使用已标记类别的图片数据作为训练数据,通过梯度反向传播更新该稠密多路卷积网络中的权重,训练该稠密多路卷积网络,得到图片分类模型;将待分类图片数据输入该分类模型,得到该待分类图片数据的分类结果。本发明提出的稠密多路卷积网络,对DenseNet网络的基本模块进行了改进和优化,以获取表达力更强的特征。
-
公开(公告)号:CN111597333A
公开(公告)日:2020-08-28
申请号:CN202010343965.6
申请日:2020-04-27
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/9535 , G06F40/30 , G06F40/289 , G06Q50/26
Abstract: 本发明公开一种面向区块链领域的事件与事件要素抽取方法及装置,该方法包括:步骤一、基于区块链关键词图的web文本聚类,得到区块链文本聚合词图;步骤二、基于所述的区块链文本聚合词图,构建图注意力机制的图表示学习的事件及其要素抽取方法;首先以区块链文本聚合词图作为输入,基于图注意力模型GAT的深度学习模型进行词的表示学习,以事件及其要素进行抽取的模型训练直到模型收敛;基于收敛的模型实现Tensorflow的后台接口,而对于新的待抽取的文本通过该后台接口进行预测,返回输出的抽取值。本发明可以准确提取事件及其事件要素。
-
-
-
-
-