一种无序子结构长周期光栅及设计方法

    公开(公告)号:CN107329199A

    公开(公告)日:2017-11-07

    申请号:CN201710716708.0

    申请日:2017-08-21

    CPC classification number: G02B5/18 G02B5/1847

    Abstract: 本发明公开了一种无序子结构长周期光栅,包括阵列排布在基体上的无序子结构长周期;无序子结构长周期由子结构单元阵列排布构成,子结构单元为按照选定的旋转方向以及按照在旋转角度集合中选定的旋转角度进行旋转后的基本单元,还公开了一种无序子结构长周期光栅的设计方法,选定基本单元;设定旋转变换参数;设定无序子结构长周期;无序子结构长周期在基体上阵列排布得到无序子结构长周期光栅。本发明能继承有序结构优点的同时,在带宽和角度等方面有更强的控制能力。

    超小非对称结构的孔型偏振分束器

    公开(公告)号:CN104049301B

    公开(公告)日:2016-05-04

    申请号:CN201410302237.5

    申请日:2014-06-27

    Abstract: 本发明公开了一种超小非对称结构的孔型偏振分束器,涉及一种偏振分束器。本发明的结构是:在绝缘层上面,弯曲条形波导和弯曲周期型微结构波导背向排列;所述的弯曲条形波导是一种Si波导,包括依次连接的输入段、条形波导耦合段和TM输出段,呈反“C”字形;所述的弯曲周期性微结构波导是一种Si波导,包括依次连接的弯曲连接段、周期孔型耦合段和TE输出段,呈“C”字形;所述的周期孔型耦合段的空气孔尺寸恒定,弯曲连接段和TE输出段的空气孔尺寸渐变,空气孔等间距排列。本偏振分束器体积超小,便于大规模集成,降低成本;损耗小,分束效率高,可作为一种重要的功能器件广泛用于偏光导航、光通信、光电检测和光传感等领域。

    前置环形卤钨灯光源
    23.
    发明公开

    公开(公告)号:CN104534340A

    公开(公告)日:2015-04-22

    申请号:CN201410818107.7

    申请日:2014-12-25

    CPC classification number: F21S2/005 F21V19/006 F21V23/06 G01N21/359

    Abstract: 本发明公开了一种前置环形卤钨灯光源,涉及近红外微型光谱仪的光源。本发明包括卤钨灯(1)、光约束器(2)、螺纹柱(3)、半开持杆(4)、简单驱动电路(5)和保护盖(6);在光约束器(2)上均匀设置有8个卤钨灯(1)组成一环形结构;在光约束器(2)内设置有螺纹柱(3)和简单驱动电路(5);卤钨灯(1)和简单驱动电路(5)连接;半开持杆(4)啮合在光约束器(2)尾端,保护盖(6)啮合在光约束器(2)前端。本发明将光源前置,实现了降低光源设计复杂度、提高光源能量利用率、增大探测面积、获取更加全面的光谱信息和提高近红外光源的便携度,从而有利于近红外光谱检测、减小近红外光谱仪的体积和降低仪器的开发成本。

    一种色散平坦光子晶体光纤及其色散调控方法

    公开(公告)号:CN103257396B

    公开(公告)日:2015-04-15

    申请号:CN201310130883.3

    申请日:2013-04-16

    Abstract: 本发明公开了一种色散平坦光子晶体光纤,包括纤芯、内包层和外包层,内包层为多层结构,且每层均呈正2N边形结构,该正2N边形结构上均匀设置有多个孔结构,纤芯是由内包层的最内层所环绕的区域所形成,外包层包围内包层设置,且为多层结构,且每层均呈正2N边形结构,该正2N边形结构上均匀设置有多个孔结构,内包层和外包层的多层正2N边形均以光纤的中心点为中心,每一层上孔结构的间距均相等,外包层中每一层正2N边形结构的对应边均彼此平行,内包层中至少有一层正2N边形结构的对应边与外包层的对应边不平行,所有孔结构的直径大小相等。本发明通过维持包层孔结构大小相同的方式,降低拉制高质量色散平坦光子晶体光纤的难度。

    超小非对称结构的柱型偏振分束器

    公开(公告)号:CN104020523A

    公开(公告)日:2014-09-03

    申请号:CN201410302125.X

    申请日:2014-06-27

    Abstract: 本发明公开了一种超小非对称结构的柱型偏振分束器,涉及一种偏振分束器。本发明的结构是:在绝缘层上面,弯曲条形波导和弯曲周期型微结构波导背向排列;所述的弯曲条形波导是一种Si波导,包括依次连接的输入段、条形波导耦合段和TE输出段,呈反“C”字形;所述的弯曲周期性微结构波导是一种Si波导,包括依次连接的弯曲连接段、周期柱型耦合段和TM输出段,呈“C”字形;所述的周期柱型耦合段由多个Si介质柱组成,呈平行排列。本偏振分束器耦合长度短,体积超小,便于大规模集成,降低成本;插入损耗小,分束难度低,可作为一种重要的功能器件广泛用于偏光导航、光通信、光电检测和光传感等领域。

    一种色散平坦光子晶体光纤及其色散调控方法

    公开(公告)号:CN103257396A

    公开(公告)日:2013-08-21

    申请号:CN201310130883.3

    申请日:2013-04-16

    Abstract: 本发明公开了一种色散平坦光子晶体光纤,包括纤芯、内包层和外包层,内包层为多层结构,且每层均呈正2N边形结构,该正2N边形结构上均匀设置有多个孔结构,纤芯是由内包层的最内层所环绕的区域所形成,外包层包围内包层设置,且为多层结构,且每层均呈正2N边形结构,该正2N边形结构上均匀设置有多个孔结构,内包层和外包层的多层正2N边形均以光纤的中心点为中心,每一层上孔结构的间距均相等,外包层中每一层正2N边形结构的对应边均彼此平行,内包层中至少有一层正2N边形结构的对应边与外包层的对应边不平行,所有孔结构的直径大小相等。本发明通过维持包层孔结构大小相同的方式,降低拉制高质量色散平坦光子晶体光纤的难度。

    用于气体光声光谱检测的束腰双曲型光声池

    公开(公告)号:CN111735775B

    公开(公告)日:2024-08-09

    申请号:CN202010678118.5

    申请日:2020-07-15

    Abstract: 本发明公开了一种用于气体光声光谱检测的束腰双曲型光声池,涉及气体检测光声池。本光电池的结构是:在壳体(0)的中心设置有谐振腔(5),在谐振腔(5)的左右两边对称设置有第1玻璃窗口(2)、第1缓冲室(1)和第2玻璃窗口(6)、第2缓冲室(8),在谐振腔(5)上边的中心设置有微音器(7),在第1缓冲室(1)的下边设置有进气口(3),在第2缓冲室8的下边设置有出气口(4),在壳体(0)其它空间填充有密封胶(9)。本发明提升了光声池品质因素Q和信噪比;在谐振频率、声压幅值和品质因素Q等重要参数之间的调控上更加方便;获得最大的光声信号;谐振腔的母线离心率,可根据需求多样性做适当的调整,达到检测性能的最佳效果。

    基于图像传感技术的室内可见光定位系统及其方法

    公开(公告)号:CN113959429B

    公开(公告)日:2024-03-26

    申请号:CN202111170843.2

    申请日:2021-10-08

    Abstract: 本发明公开了一种基于图像传感器的室内可见光定位系统及其方法,涉及光通信定位技术。本系统是:由前后连接的可见光定位的发射端和可见光定位的接收端组成;开发板、放大、驱动电路和可调制LED光源依次连接,稳压电源和放大、驱动电路连接;可见光定位的接收端是一种含有图像传感器的智能终端设备,内嵌有光源坐标获取模块、图像中数据处理模块和定位模块,光源坐标获取模块和图像中数据处理模块分别和定位模块交互。与现有技术相比,本发明具有下列优点和积极效果:①利用图像传感器获取光照度值法;②遮挡像素的灰度补偿法;③智能终端转动坐标筛选法;④在可见光通信的同时实时完成可见光定位。

    基于光声光谱的苹果内部品质检测系统及其方法

    公开(公告)号:CN109668837B

    公开(公告)日:2024-01-12

    申请号:CN201910148708.4

    申请日:2019-02-28

    Abstract: 本发明公开了一种基于光声光谱的苹果内部品质检测系统及其方法,属于水果内部品质检测领域。本系统是:红外激光器组、光纤合束器、光纤准直器、转接件和探头式光声腔依次连通;在探头式光声腔的尾端通过紧固螺母固定嵌入的硅胶吸盘,在硅胶吸盘的正前方放置有苹果;在探头式光声腔首端的侧面设置有传声器;传声器、控制与信号处理电路和触摸屏依次连接;红外激光器组和控制与信号处理电路相互连接。本发明通过使用红外激光器组加光纤合束器的组合、光纤准直器和自行设计的探头式光声腔;在具备光声光谱技术灵敏度高、样品无需预处理、样品无损和可测光谱范围广特点的同时,该系统拥有检测精度高、系统稳定性强和方便实用的优点;为水果内部品质无损检测提供了一种极具竞争力的技术方案。

    一种激光制作大面积高密度微孔阵列的方法

    公开(公告)号:CN117139876A

    公开(公告)日:2023-12-01

    申请号:CN202311316916.3

    申请日:2023-10-12

    Abstract: 本发明公开了一种激光制作大面积高密度微孔阵列的方法,涉及激光加工技术领域。本方法是:①使用矩形分割法对加工区域进行网格划分,通过图像识别得到标准模块与非标准模块;②针对标准模块,基于模拟退火算法解决广义旅行商问题,进行打孔顺序路径的优化,通过多次迭代获得一个条最优路径;或③对于非标准模块,通过解决带约束的旅行商问题进行路径优化,两个临近的非标准模块不连续加工;④将每个模块看作单个单元,通过步骤②、③获取的优选路径进行激光加工,解决基于带约束条件的旅行商问题对加工区域的所有模块的加工顺序进行规划,得到一条优选路径,即再次划分模块。本发明适用于激光加工技术领域中需要制作大面积高密度微孔阵列的应用。

Patent Agency Ranking