支持深度神经网络推理加速的异构存算融合系统及方法

    公开(公告)号:CN112149816B

    公开(公告)日:2021-02-12

    申请号:CN202011340107.2

    申请日:2020-11-25

    Abstract: 本发明公开了一种支持深度神经网络推理加速的异构存算融合系统及方法,包括:主机处理器,用于控制和管理整个异构存算融合系统;非易失内存模块,与所述主机处理器相连,用于神经网络处理;3D堆叠内存模块,与所述主机处理器相连,用于神经网络处理;网络模块,与所述主机处理器相连,用于与外部主机连接;配置电路,与所述主机处理器相连,用于接收所述主机处理器的配置命令并控制电压发生器,也用于接收所述主机处理器的配置命令并配置3D堆叠内存模块;电压发生器,分别与所述非易失内存模块和配置电路相连,用于接收所述配置电路的控制命令,对所述非易失内存模块施加外部激励,调节其电导状态。

    一种联邦学习模型训练方法、装置及联邦学习系统

    公开(公告)号:CN112232528A

    公开(公告)日:2021-01-15

    申请号:CN202011473442.X

    申请日:2020-12-15

    Abstract: 本发明公开了一种联邦学习模型训练方法、装置及联邦学习系统,边缘计算服务器和端设备接收云端联邦学习子系统形成的全局机器学习模型信息;一个边缘计算服务器与一个以上的端设备利用网络局部性的优势形成区域,端设备依靠本地数据并采用截断的方式完成模型本地训练,边缘计算服务器负责所辖区域内端设备的多轮更新并向云端联邦学习子系统发送更新后的模型信息;边缘计算服务器也采用截断的方式完成模型本地训练,云端联邦学习子系统负责多个边缘计算服务器的梯度更新;在训练到达收敛期,分别对边缘计算服务器所辖区域内端设备和云端联邦学习子系统负责的多个边缘计算服务器实施截断节点的补偿,形成全局机器学习模型信息。

    一种自适应层级的图像切分识别方法、装置及系统

    公开(公告)号:CN111738236A

    公开(公告)日:2020-10-02

    申请号:CN202010817355.5

    申请日:2020-08-14

    Abstract: 本发明公开了一种自适应层级的图像切分识别方法、装置及系统,该方法包括:获取高清视频中某一帧的原始图像;对所述原始图像,进行图像切分,得到若干有像素重叠的图像切片;对子图像切片进行迭代切分并识别;最终对所有识别结果进行选择得到最终图像的识别结果。本发明解决了现有对高清图像物体识别存在的速度慢、小物体检出率低的问题,做到了高清图像中物体识别速度快、检出率高的效果。

Patent Agency Ranking