-
公开(公告)号:CN117437604A
公开(公告)日:2024-01-23
申请号:CN202311767741.8
申请日:2023-12-21
Applicant: 华侨大学
IPC: G06V20/54 , G06N3/088 , G06V10/40 , G06V10/74 , G06V10/762 , G06V10/764 , G06V10/82
Abstract: 本发明公开了一种无监督车辆再辨识模型训练方法、车辆再辨识方法及装置,涉及人工智能、机器视觉领域,通过基于深度学习的车辆再辨识模型从无标签车辆图像中学习的车辆图像特征,采用聚类算法进行聚类得到伪标签,并随机选择部分特征数据进行随机放缩,获得随机增强特征;基于随机增强特征计算后验类别概率,并利用随机增强特征与车辆图像特征之间的相似度组合后验类别概率,获得随机增强后验类别概率,利用随机增强后验类别概率赋权伪标签中的非峰值类别概率分布,实现伪标签的动态平滑,得到动态平滑伪标签,改善无监督车辆再辨识训练效果,解决当前无监督车辆再辨识依赖身份伪标签而聚类产生的身份伪标签质量不佳的问题。
-
公开(公告)号:CN117237197A
公开(公告)日:2023-12-15
申请号:CN202311475296.8
申请日:2023-11-08
Applicant: 华侨大学
IPC: G06T3/40 , G06N3/0455 , G06N3/0464 , G06N3/08 , G06V10/80
Abstract: 本发明公开了一种基于交叉注意力机制与Swin‑Transformer的图像超分辨率方法及装置,涉及图像重建领域,该方法包括:获取待重建的低分辨率图像及其对应的梯度图;构建基于交叉注意力机制与Swin‑Transformer的图像超分辨率模型并训练,得到经训练的图像超分辨率模型;将待重建的低分辨率图像输入经训练的图像超分辨率模型,经训练的图像超分辨率模型包括SR分支和梯度分支,SR分支和梯度分支中分别采用浅层特征提取模块提取低分辨率图像及其对应的梯度图的浅层特征,通过全局深层特征提取模块将浅层特征进行融合,得到深层特征,并输入图像重建模块,重建得到高分辨率图像,解决原有经典图像超分辨率模型难以提取全局特征的问题,以提高重建图像的清晰度。
-
公开(公告)号:CN117173025A
公开(公告)日:2023-12-05
申请号:CN202311437434.3
申请日:2023-11-01
Applicant: 华侨大学
IPC: G06T3/40 , G06N3/0455 , G06N3/0464 , G06N3/08 , G06V10/42 , G06V10/44 , G06V10/80
Abstract: 本发明公开了基于跨层混合注意力Transformer的单帧图像超分辨率方法及系统,涉及图像超分辨率领域,方法包括:提取低分辨率图像的浅层特征;采用多级混合注意力模块对浅层特征进行多次深层特征提取,保留每一级混合注意力模块的输出作为中间特征图,最后一级混合注意力模块的输出作为第一关联特征;捕捉各级中间特征图的多尺度上下文信息,得到第二关联特征;捕捉各级中间特征图之间的通道依赖关系,得到第三关联特征;对第一关联特征、第二关联特征和第三关联特征进行特征融合,得到深层全局特征;对深层全局特征进行上采样,得到重建的高分辨率图像。本发明提升了超分辨率中的图像信息利用率和细节重建能力,增强了全局特征表达能力。
-
公开(公告)号:CN116994295A
公开(公告)日:2023-11-03
申请号:CN202311256034.2
申请日:2023-09-27
Applicant: 华侨大学
Abstract: 本发明公开了一种基于灰度样本自适应选择门的野生动物类别识别方法,涉及机器视觉技术领域,利用灰度图像作为辅助模态来缓解可见光图像和红外光图像之间的模态差异。具体地说,本发明以可见光图像和灰度图像之间在特征空间中的差异来模拟可见光图像和红外光图像的模态差异,设计一种基于神经网络的自适应选择门模块,从可见光图像和灰度图像的特征差异中学习出灰度图像的重要性,用于合理控制灰度图像参与模型鉴别性训练的程度,解决因白天可见光图像与夜晚红外光图像之间模态跨度变化大,导致计算机对野生动物难以准确识别的问题,从而提升野生动物的识别率。因此,本发明可广泛应用于智慧生态以及动物保护等场景中的智能视频分析系统。
-
公开(公告)号:CN116634147B
公开(公告)日:2023-10-31
申请号:CN202310911767.9
申请日:2023-07-25
Applicant: 华侨大学
IPC: H04N19/11 , H04N19/169 , G06N3/0464 , G06N3/08 , G06V10/764 , G06V10/774 , G06V10/82 , G06V10/80
Abstract: 本发明公开了一种基于多尺度特征融合的HEVC‑SCC帧内CU快速划分编码方法及装置,涉及视频编码领域,方法包括:首先搭建数据库,构建基于多尺度特征融合的卷积神经网络模型,并训练基于多尺度特征融合的卷积神经网络模型;其次将输入的CTU通过多尺度特征融合卷积神经网络,输出预测标签;最后为不同类型序列赋不同阈值,根据预测标签指导平台进行编码,从而跳过不必要的深度遍历。本发明提出的基于多尺度特征融合的HEVC‑SCC帧内CU快速划分编码方法,能够节省编码时间,明显降低屏幕内容视频的计算复杂度。
-
公开(公告)号:CN116778446A
公开(公告)日:2023-09-19
申请号:CN202310761995.2
申请日:2023-06-26
Applicant: 华侨大学
IPC: G06V20/56 , G06N3/0464 , G06V10/82 , G06N3/048 , G06V10/22 , G06V10/764 , G06V10/26 , G06V10/74 , G06N3/08
Abstract: 本发明公开了一种车道线快速检测方法、装置及可读介质,获取路况图像;构建基于编码器‑解码器的神经网络并训练,得到车道线检测模型,基于编码器‑解码器的神经网络包括主干分支和辅助分支,主干分支包括依次连接的编码器网络、CBAM注意力机制模块和解码器网络,编码器网络中包括改进的残差结构,改进的残差结构包括第一卷积层以及分别与第一卷积层连接的第一分支和第二分支,第一分支包括第二卷积层,第二分支包括依次连接的第三卷积层和第四卷积层,第一分支、第二分支与第一卷积层的输入通过加法器相连,辅助分支为实例分割网络,并仅在训练过程中使用;将路况图像输入车道线检测模型,检测得到车道线图像,提高车道线检测的准确率和检测速度。
-
公开(公告)号:CN116757977A
公开(公告)日:2023-09-15
申请号:CN202310502926.X
申请日:2023-05-06
Applicant: 华侨大学
IPC: G06T5/50 , G06T7/246 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于多尺度双向卷积的压缩视频感官质量增强方法及系统,包括:将输入的多个视频帧进行运动补偿,获得对齐后的特征;所述输入的多个视频帧包括参考帧和参考帧的前后若干相邻帧;提取对齐后的特征的时序信息,获得时空融合后的特征;提取时空融合后的特征的方向特征,获得水平特征和垂直特征;基于参考帧和相邻帧来指导水平特征和垂直特征的恢复,获得细节注意力机制处理后的特征;将通过细节注意力机制处理后的特征进行增强,获得增强后的方向特征;将增强后的方向特征与参考帧进行逐元素相加,得到增强帧。本发明能够提高重建视频帧的感官质量,恢复的重建帧更符合人类视觉系统,能够改善压缩带来的质量下降问题。
-
公开(公告)号:CN116740143A
公开(公告)日:2023-09-12
申请号:CN202310744027.0
申请日:2023-06-21
Applicant: 华侨大学
IPC: G06T7/246 , G06T7/73 , G06V10/82 , G06V10/764 , G06V10/766 , G06V10/74
Abstract: 本发明提供一种联合轨迹损失和排名损失优化的鲁棒目标跟踪器,包括:步骤S1、用非权重共享的孪生骨干网络提取特征,得到模板特征图和历史特征图;步骤S2、利用模板特征图和历史特征图获得目标相似性响应图;步骤S3、利用轨迹损失学习使跟踪器学习目标的运动信息;步骤S4、利用IOU引导的排名损失优化跟踪器的分类子网络和回归子网络;步骤S5、联合轨迹损失和IOU引导的排名损失实现目标状态的估计。本发明能够提升孪生跟踪器的准确性和鲁棒性。
-
公开(公告)号:CN116668723A
公开(公告)日:2023-08-29
申请号:CN202310550087.9
申请日:2023-05-16
Applicant: 华侨大学
IPC: H04N19/597 , H04N19/593 , H04N19/124 , H04N19/119 , H04N19/61 , G06T9/00 , G06N3/0464
Abstract: 本发明公开了一种基于卷积神经网络的3D‑HEVC深度图帧内编码单元划分方法及装置,通过构建编码单元划分预测模型并训练,采用3D‑HEVC编码器对当前待编码块进行编码,在编码过程中确定编码单元的当前尺寸和当前编码量化参数;根据编码单元的当前尺寸和/或当前编码量化参数确定在编码过程中采用速度模式或性能模式,在速度模式中,将预测值作为当前待编码块的划分结果;在性能模式中,使用3D‑HEVC编码器预测当前待编码块的划分结果;判断编码单元的当前尺寸是否大于第四尺寸,若是则调整当前待编码块的尺寸缩小一个级别,并重复以上步骤,直至得到当前待编码块的所有划分结果,本方法在保证一定编码质量的前提下,能够显著节省深度图编码所需时间。
-
公开(公告)号:CN116109880A
公开(公告)日:2023-05-12
申请号:CN202310088624.2
申请日:2023-02-09
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司
Abstract: 本发明提供一种鬼影方位视觉注意力学习方法。现有方位视觉注意力学习方法依赖卷积运算进行维度变换以及方位信息学习,计算和参数代价都较高。为此,本发明将轻量的鬼影模块耦合到方位视觉注意力学习方法中,设计降维鬼影模块轻量化压缩特征映射图,随后进行方位信息学习以节约计算和参数代价;设计去冗余鬼影模块降低特征映射图中的冗余信息,能改善特征质量。本发明作为一种新颖的视觉注意力机制有广泛应用,例如图像目标检测、图像目标识别、图像分割等。
-
-
-
-
-
-
-
-
-