基于EMD数据增强和并行SCN的运动想象脑电信号识别方法

    公开(公告)号:CN115221969A

    公开(公告)日:2022-10-21

    申请号:CN202210898574.X

    申请日:2022-07-28

    Abstract: 本发明请求保护一种基于EMD数据增强和并行时空卷积网络(SCN)的运动想象脑电信号识别方法,该方法包括步骤:先对原始脑电信号进行预处理,将预处理的脑电信号采用EMD分解得到本征模态,本征模态按照时间维度分段,并与另一相同标签样本不重复的本征模态段进行组合,进而生成更多符合原始脑电信号特征的人造数据,以解决脑电信号样本量少的问题。接着设计了一种并行时空卷积网络,第一层在时间上做卷积,第二层在通道上做卷积,可充分提取脑电信号的时空特征,并考虑运动想象的节律主要分布在μ和β节律,所以分别将脑电信号的μ和β频段作为并行时空卷积网络的输入,以提取脑电信号时、空、频域的特征并分类。本发明可以有效克服因脑电信号数据量少导致的识别准确率低的问题。

    一种基于改进A*算法的高效路径规划方法

    公开(公告)号:CN114721401A

    公开(公告)日:2022-07-08

    申请号:CN202210564768.6

    申请日:2022-05-23

    Abstract: 本发明请求保护一种基于改进A*算法的高效路径规划方法,该方法一种在大面积地图环境下快速得到一条最优或者次优路径的改进A*算法。首先,相对于传统A*算法8邻域的搜索方式,本文使用了适用于大面积栅格地图下的4邻域搜索方式,大大减少了对一些不必要节点的计算。其次,本文改进了启发函数,同时对启发函数的预估代价给予不同的权重,使得移动机器人在规划过程中根据与起始点和目标点距离灵活计算节点的预估代价。最后,通过选取多组距离不同的目标点对改进前后的A*算法进行了仿真试验,对比了各组规划的用时时间、访问节点的数量、以及路径的平滑性,验证了所提算法在路径规划上的高效性。

Patent Agency Ranking