基于动态智能算法的宠物喂养方法及系统

    公开(公告)号:CN106472332B

    公开(公告)日:2019-05-10

    申请号:CN201610883991.1

    申请日:2016-10-10

    Abstract: 本发明提供了一种基于动态智能算法的宠物喂养方法及系统,其中的方法包括:采集宠物的种类、性别、年龄、心跳频率、血压、体温、活动量、喂食类型、喂食量、当前图像、当前体重构成影响因素矩阵X,并上传至服务器;其中,喂食类型和喂食量构成决策变量;在服务器内利用Elman神经网络建立影响因素矩阵X与宠物健康指数之间的复杂非线性关系,获得宠物喂养模型;利用MOEA/D算法对宠物喂养模型进行优化,获得决策变量的一组最优解;将决策变量的该组最优解作为宠物的推荐决策X*通过服务器下发至用户的终端设备进行显示;用户根据终端设备显示的推荐决策X*喂食宠物。利用本发明能够确定最优的宠物喂养方案,为宠物营造了更好的生活环境。

    基于递归神经网络与偏好信息的铝电解建模与优化方法

    公开(公告)号:CN109086469A

    公开(公告)日:2018-12-25

    申请号:CN201810193122.5

    申请日:2018-03-09

    Abstract: 本发明公开了一种基于递归神经网络与偏好信息的铝电解建模与优化方法,首先利用递归神经网络对铝电解生产过程进行建模,然后决策者设定期望目标值,再利用偏好多目标量子个体群算法对生产过程模型进行优化,得到各决策变量的一组最满足决策者期望的最优解以及该最优解对应的电流效率、槽电压、全氟化物排放量和吨铝能耗。利用差分进化算法中变异、交叉和选择操作,对决策变量进行偏好寻优,以此确定铝电解生产过程中工艺参数的最优值,可有效提高电流效率,降低槽电压,减少温室气体排放量和吨铝能耗,满足决策者偏好的同时,达到节能减排的目的。

    基于宠物日常数据分析的宠物喂养方法及系统

    公开(公告)号:CN106447117B

    公开(公告)日:2018-05-01

    申请号:CN201610883635.X

    申请日:2016-10-10

    Abstract: 本发明提供了一种基于宠物日常数据分析的宠物喂养方法及系统,其中的方法包括:采集宠物的种类、性别、年龄、心跳频率、血压、体温、活动量、喂食类型、喂食量,当前图像、当前体重构成影响因素矩阵X,并上传至服务器;其中,喂食类型和喂食量构成决策变量;在服务器内利用Elman神经网络建立影响因素矩阵X与宠物健康指数之间的复杂非线性关系,获得宠物喂养模型;利用NSGA‑Ⅱ算法对宠物喂养模型进行优化,获得决策变量的一组最优解;将决策变量的该组最优解作为宠物的推荐决策X*通过服务器下发至用户的终端设备进行显示;用户根据终端设备显示的推荐决策X*喂食宠物。利用本发明能够确定最优的宠物喂养方案,为宠物营造了更好的生活环境。

    基于BP神经网络与MPSO算法的铝电解节能减排控制方法

    公开(公告)号:CN105447567B

    公开(公告)日:2017-12-05

    申请号:CN201510752590.8

    申请日:2015-11-06

    Abstract: 本发明提供了一种基于BP神经网络与MPSO算法的铝电解节能减排控制方法,首先,利用BP神经网络对铝电解生产过程进行建模,然后,利用基于多目标粒子群算法对生产过程模型进行优化,得到各决策变量的一组最优解以及该最优解对应的电流效率、吨铝能耗以及全氟化物排放量。MPSO算法不需要进行交叉、变异操作,因此编码过程简单、容易实现,且与其他算法相比,MPSO算法具有记忆性,即保留了所有全局最优值和局部最优值,保证了在种群进化过程中最优取值的完整性。该方法确定了铝电解生产过程中工艺参数的最优值,有效提高了电流效率,降低了吨铝能耗,减少了温室气体排放量,真正达到节能减排的目的。

    基于数据分析的植物智能培育方法及系统

    公开(公告)号:CN106650212A

    公开(公告)日:2017-05-10

    申请号:CN201610884376.2

    申请日:2016-10-10

    CPC classification number: G06F19/00

    Abstract: 本发明提供了一种基于数据分析的植物智能培育方法及系统,其中的方法包括:采集植物的种类、生长时期、土壤湿度、土壤pH值、光照强度、环境温度、环境湿度、图像、浇水量、施肥量、施肥类型并构成影响因素矩阵X,并上传至服务器;其中,浇水量、施肥量和施肥类型构成决策变量;在服务器内利用Elman神经网络建立植物各影响因素矩阵X与植物健康指数之间的复杂非线性关系,获得植物培育模型;利用MOEA/D算法对植物培育模型进行优化,获得决策变量的一组最优解;将决策变量的该组最优解作为植物的推荐决策通过服务器下发至用户的终端设备进行显示;用户根据终端设备显示的推荐决策培育植物。利用本发明能够确定最优的植物培育方案,营造更好的生活环境。

    基于云数据的宠物喂养推荐方法及系统

    公开(公告)号:CN106407711A

    公开(公告)日:2017-02-15

    申请号:CN201610885486.0

    申请日:2016-10-10

    CPC classification number: G06F19/3475

    Abstract: 本发明提供了一种基于云数据的宠物喂养推荐方法及系统,其中的方法包括:采集宠物的种类、性别、年龄、心跳频率、呼吸频率、体温、活动量、喂食类型、喂食量,当前图像、当前体重构成影响因素矩阵X,并上传至服务器;其中,喂食类型和喂食量构成决策变量;在服务器内利用Elman神经网络建立影响因素矩阵X与宠物健康指数之间的复杂非线性关系,获得宠物喂养模型;利用MBFO算法对宠物喂养模型进行优化,获得决策变量的一组最优解;将决策变量的该组最优解作为宠物的推荐决策X*通过服务器下发至用户的终端设备进行显示;用户根据终端设备显示的推荐决策X*喂食宠物。利用本发明能够确定最优的宠物喂养方案,为宠物营造了更好的生活环境。

    一种基于模糊智能行为模拟的家居环境健康控制方法

    公开(公告)号:CN103345152A

    公开(公告)日:2013-10-09

    申请号:CN201310220199.4

    申请日:2013-06-05

    Abstract: 本发明公开了一种基于模糊智能行为模拟的家居环境健康控制方法,其特征在于:包括如下步骤:搭建家居环境健康控制装置;建立健康模糊控制数学模型;植入单片机模糊控制器;采集室内环境,传送给单片机模糊控制器;单片机模糊控制器进行模糊推理运算,得到模糊舒适控制输出响应值;传送给驱动执行机构。克服了室内健康具有不可直接测量性,以及硬件电路复杂等难题。本发明具有控制机制简单,控制方法科学、有效以及硬件电路简单等特点,在实际应用时便于推广和使用。

    一种基于模糊智能行为模拟的家居环境节能控制方法

    公开(公告)号:CN103293994A

    公开(公告)日:2013-09-11

    申请号:CN201310220196.0

    申请日:2013-06-05

    Abstract: 本发明公开了一种基于模糊智能行为模拟的家居环境节能控制方法,其特征在于:包括如下步骤:搭建节能模糊控制装置;建立节能节能模糊控制数学模型;植入单片机模糊控制器;采集室内环境,传送给单片机模糊控制器;单片机模糊控制器进行模糊推理运算,得到模糊舒适控制输出响应值;传送给驱动执行机构;并控制窗帘的开闭度。克服了传统室内节能的参数相互矛盾性,以及硬件电路复杂等难题。该节能控制方法具有模糊评判方法科学、有效,硬件电路简单、响应速度快等特点。

    基于递归神经网络与偏好信息的铝电解建模与优化方法

    公开(公告)号:CN109086469B

    公开(公告)日:2022-11-11

    申请号:CN201810193122.5

    申请日:2018-03-09

    Abstract: 本发明公开了一种基于递归神经网络与偏好信息的铝电解建模与优化方法,首先利用递归神经网络对铝电解生产过程进行建模,然后决策者设定期望目标值,再利用偏好多目标量子个体群算法对生产过程模型进行优化,得到各决策变量的一组最满足决策者期望的最优解以及该最优解对应的电流效率、槽电压、全氟化物排放量和吨铝能耗。利用差分进化算法中变异、交叉和选择操作,对决策变量进行偏好寻优,以此确定铝电解生产过程中工艺参数的最优值,可有效提高电流效率,降低槽电压,减少温室气体排放量和吨铝能耗,满足决策者偏好的同时,达到节能减排的目的。

Patent Agency Ranking