基于可学习频域特征分解的图像融合方法、系统及介质

    公开(公告)号:CN118887506A

    公开(公告)日:2024-11-01

    申请号:CN202411157145.2

    申请日:2024-08-22

    Abstract: 本发明实施例公开了一种基于可学习频域特征分解的图像融合方法、系统及介质,方法包括:对初始红外可见光图像进行特征提取,获取图像离散信号;通过低频分析向量和高频分析向量构建可学习频域特征分解网络;根据所述可学习频域特征分解网络分解图像离散信号,获取低频分量特征、水平高频分量特征、垂直高频分量特征和对角线高频分量特征;对低频分量特征进行全局特征信息提取,获取可见光与红外光的全局特征;对水平高频分量特征、垂直高频分量特征和对角线高频分量特征进行细节特征信息提取,获取可见光与红外光的三通道细节特征;融合全局特征和三通道细节特征,并结合初始红外可见光图像输出最终的融合图像。本方法的参数量及计算复杂度较低。

Patent Agency Ranking