基于组低秩表示的迭代高光谱图像无损压缩方法

    公开(公告)号:CN113068044A

    公开(公告)日:2021-07-02

    申请号:CN202110312680.0

    申请日:2021-03-24

    Abstract: 本发明公开了一种基于组低秩表示的迭代高光谱图像无损压缩方法,解决了传统压缩方法忽略了图像空间的相关性,聚类结果不稳定,模块之间无联系的问题。实现步骤包括:定义光谱角相似性度量方法;对原始图像粗略聚类;低秩表示求解粗略聚类块系数矩阵;对系数矩阵再聚类得到初始聚类结果;对初始聚类结果迭代优化得到最终聚类块的预测系数与预测残差;接着进行熵编码,得到待传输的码流文件;熵解码后在解码端对码流文件解压缩,得到无损压缩后的高光谱图像。本发明定义光谱角相关性度量方法,增加对空间相关性的利用;低秩表示与子空间聚类相结合,增加聚类结果稳定性;通过迭代优化关联各个模块,增加了结果压缩比。应用于影像压缩领域。

    基于GRU深度卷积网络的智能辐射源识别方法

    公开(公告)号:CN109271926A

    公开(公告)日:2019-01-25

    申请号:CN201811074578.6

    申请日:2018-09-14

    Abstract: 本发明是一种基于GRU深度卷积网络的智能辐射源识别方法,主要解决现有技术无法提取到雷达辐射源信号序列化特征的问题,其方案为:对雷达辐射源信号进行分类;仿真雷达辐射源信号,并对雷达辐射源信号进行切片;将切片后的样本转为二维实数样本,对二维实数样本归一化并划分训练样本集与测试样本集;构建基于门控循环单元GRU的深度神经网络;将训练样本集输入深度神经网络中,通过对损失函数的优化,得到训练好的深度神经网络模型;将测试样本集输入到训练好的深度神经网络模型中,得到雷达辐射源信号识别结果。本发明能提取信号前后关联特征,避免人工特征提取和先验知识,复杂度低,分类结果准确,可用于复杂电磁环境下对雷达辐射源识别。

Patent Agency Ranking