一种高速列车轮对轴承微弱故障诊断方法及系统

    公开(公告)号:CN113358356B

    公开(公告)日:2022-12-27

    申请号:CN202110631601.2

    申请日:2021-06-07

    Applicant: 苏州大学

    Abstract: 本发明公开了一种高速列车轮对轴承微弱故障诊断方法及系统,包括以下步骤:S1:利用高速列车轮对轴承信号特征频率更新趋势构建频谱特征信息扫描器,获取信号中潜在特征成分的边界参数;S2:根据获取到的边界参数构建滤波器组,对高速列车轮对轴承信号进行分解,得到对应的模式分量;S3:建立融合故障敏感指数,通过计算模式分量对应的故障敏感指数定位故障特征成分;S4:对故障特征成分执行包络分析获得包络谱,根据包络谱检测微弱故障特征,完成高速列车轮对轴承微弱故障诊断。本发明解决现有自适应信号分解方法在轮对轴承信号分解中带来的问题,实现高速列车轮对轴承微弱故障诊断。

    一种钢轨波磨检测方法及系统

    公开(公告)号:CN115112061A

    公开(公告)日:2022-09-27

    申请号:CN202210742688.5

    申请日:2022-06-28

    Applicant: 苏州大学

    Abstract: 本发明涉及一种钢轨波磨检测方法及系统,包括:对正常轨道列车轴箱处振动加速度的时域信号进行稀疏优化处理,根据稀疏重构后的时域信号幅值和频域信号能量设置轨道波磨时域信号报警阈值和频域信号报警阈值,将待检测轨道列车轴箱处振动加速度的时域信号进行稀疏优化处理,将稀疏重构后的时域信号幅值和频域信号能量与时域信号报警阈值和频域信号报警阈值进行比较,当时域信号幅值和频域信号能量均大于报警阈值时,判断待检测轨道存在波磨。本发明提供的钢轨波磨检测方法使用稀疏优化方法对列车轴箱处振动加速度信号进行处理,通过设置报警阈值检测未知轨道区段,检测速度快,不影响列车正常运行,检测结果准确,可信度高。

    变步长多尺度复杂度融合指标的故障严重程度评估方法

    公开(公告)号:CN114037215A

    公开(公告)日:2022-02-11

    申请号:CN202111211555.7

    申请日:2021-10-18

    Applicant: 苏州大学

    Abstract: 本发明公开了本发明提出了一种基于变步长多尺度复杂度融合指标的故障严重性评估方法。该方法首先提出了变步长多尺度策略,通过优化粗粒化过程,更全面地挖掘了故障特征,该策略解决了传统复杂度指标(LZC)因单尺度分析导致难以挖掘深层次信息的问题,同时也解决了传统多尺度复杂度指标(MLZC)因序列长度随尺度增加而缩短导致计算结果不准确的问题,以此构建了变步长多尺度复杂度指标(VSMLZC)。该发明相比于传统的复杂度指标,能够更准确、全面地挖掘故障特征,实现对旋转设备的早期故障诊断和损伤程度评估。

    变工况下类内自适应轴承故障诊断方法

    公开(公告)号:CN111651937A

    公开(公告)日:2020-09-11

    申请号:CN202010496380.8

    申请日:2020-06-03

    Applicant: 苏州大学

    Abstract: 本发明涉及一种变工况下滚动轴承的故障诊断方法,其在利用卷积神经网络学习模型的基础上,结合迁移学习的算法处理机械设备复杂多变的工况导致深度学习模型通用性变差的问题。本发明首先对不同工况下采集的数据进行切割划分样本,利用FFT对样本进行预处理,然后利用改进的ResNet-50提取样本的低层次特征,接着多尺度特征提取器从不同角度分析低层次特征得到高层次特征作为分类器的输入。在训练的过程中同时提取训练样本跟测试样本的高层次特征,计算两者的条件分布距离作为目标函数的一部分反向传播以实现类内自适应,降低域漂移的影响,使得深度学习模型能更好地胜任变工况下的故障诊断任务。

    中心频率收敛趋势作用下的故障诊断方法

    公开(公告)号:CN110427916B

    公开(公告)日:2020-05-01

    申请号:CN201910750064.6

    申请日:2019-08-14

    Applicant: 苏州大学

    Abstract: 本发明公开了一种中心频率收敛趋势作用下的故障诊断方法,包括(1)采集旋转机械设备的动态信号x(t);(2)设置变分模型的初始分解参数;(3)使用设定初始分解参数的变分模型分解动态信号x(t),在中心频率收敛趋势引导下遍历信号分析频带迭代分解动态信号x(t),得到优化模态{m1...mn...mN}和相应的中心频率{ω1...ωn...ωN};(4)搜索故障相关模态mI,以故障相关模态mI的中心频率ωI引导参数优化,提取包含故障信息的最优目标分量(5)包络分析最优目标分量根据包络谱诊断旋转机械设备。本发明的故障诊断方法,采用中心频率收敛趋势引导的分解方式实现诊断目标设备原始动态信号的智能分解,能够对采集的设备动态信号自适应地分析,降低了技术人员使用变分模态分解方法进行机械故障诊断的难度。

    基于潜在特征编码的机械异常检测方法

    公开(公告)号:CN110060368A

    公开(公告)日:2019-07-26

    申请号:CN201910323189.0

    申请日:2019-04-22

    Applicant: 苏州大学

    Abstract: 本发明公开了一种基于潜在特征编码的机械异常检测方法。本发明一种基于潜在特征编码的机械异常检测方法,包括:数据预处理:对振动信号数据进行预处理,包括傅立叶变换和归一化;正向传播:将预处理完的信号输入第一个全卷积网络,对数据进行编码。本发明的有益效果:本方法针对异常样本缺失问题,利用深度网络的特征挖掘能力,学习正常信号样本的数据分布,通过对信号进行编码-解码-再编码,将信号转移到潜在空间中进行数据分布对比。

    基于轮廓弦角特征的遮挡目标识别方法

    公开(公告)号:CN104978582B

    公开(公告)日:2018-01-30

    申请号:CN201510246005.7

    申请日:2015-05-15

    Applicant: 苏州大学

    Abstract: 本发明涉及一种基于轮廓弦角特征的遮挡目标识别方法,通过建立多个目标图像的局部特征的模板库;提取出目标边缘的轮廓特征;构造各轮廓点的弦角特征描述子;利用弦角特征描述子的自包含属性对存在遮挡的轮廓进行描述,获得轮廓段的弦角特征描述矩阵;采用L1度量方法计算目标图像轮廓点的弦角特征描述子与模板库中局部特征的轮廓点的弦角特征描述子之间的距离,获得匹配代价矩阵;利用积分图算法计算匹配代价矩阵的相似度,实现部分遮挡目标的识别。本发明可以对目标形状进行轮廓空间位置特征的提取,实现存在遮挡目标的识别,具有尺度不变性、旋转不变性和平移不变性,提高了目标识别和形状检索的准确率和鲁棒性。

    一种图像平滑方法及装置
    19.
    发明公开

    公开(公告)号:CN106920222A

    公开(公告)日:2017-07-04

    申请号:CN201710146581.3

    申请日:2017-03-13

    Applicant: 苏州大学

    Abstract: 本发明实施例提供了一种图像平滑方法,先利用局部平滑法中的双边滤波以及变换域滤波对原始图像进行平滑处理,获得引导图像;然后利用最小二乘法对原始图像、引导图像以及预设平滑图像构造最小二乘模型,加入对预设平滑图像的约束函数以控制平滑图像的稀疏度,得到平滑能量目标函数;最后利用半二次分裂法以及交替固定变量法求解该函数,从而获得原始图像经过平滑处理后的平滑图像。综合考虑全局特征以及局部特征,增强了原始图像中结构成分的保护,同时恢复了一些高对比度的细节,获得了好的图像平滑效果,有利于提高图像识别的准确率。此外,本发明实施例还提供了相应的实现装置,进一步使得所述方法更具有实用性,所述装置具有相应的优点。

    一种滚动轴承故障诊断方法

    公开(公告)号:CN106874957A

    公开(公告)日:2017-06-20

    申请号:CN201710107655.2

    申请日:2017-02-27

    Applicant: 苏州大学

    CPC classification number: G06K9/6256 G01M13/04 G06K9/6269

    Abstract: 本发明涉及一种滚动轴承故障诊断方法,其利用卷积神经网络理论的学习算法完成故障诊断所需的特征提取任务,可以不依赖人工选择,由简单到复杂、由低级到高级自动地提取输入数据的本质特征,并能自动挖掘出隐藏在已知数据中的丰富信息;此外,采用了支持向量回归方法对测试样本进行分类识别,支持向量回归具有强大的泛化能力,对未知的新样本进行识别具有更好的精度,采用支持向量回归作为分类器对样本进行分类识别,可以克服深度学习默认的分类器泛化能力一般的缺点。本发明能够提高滚动轴承故障诊断的准确性和有效性,为解决滚动轴承故障诊断问题提供一种新的有效途径,可广泛应用于化工、冶金、电力、航空等领域的复杂机械系统故障诊断中。

Patent Agency Ranking