一种基于VHE的隐私保护神经网络的训练及预测方法

    公开(公告)号:CN108776836A

    公开(公告)日:2018-11-09

    申请号:CN201810592585.9

    申请日:2018-06-08

    Abstract: 本发明公开了一种基于VHE的隐私保护神经网络的训练及预测方法,利用VHE同态加密算法对数据集D进行加密,得到加密数据集D′,所述加密数据集D′包括训练数据集D′1和测试数据集D′2;对所述训练数据集D′1进行BP神经网络批梯度训练,得到训练后的BP神经网络;利用训练后的BP神经网络对测试数据集D′2进行预测,得到预测结果;本发明结合加密算法以及BP神经网络方法实现了密文域下的BP神经网络的训练及预测,也就是实现了云端不可信的情况下,数据在输入加密保护下依旧可以进行BP神经网络的训练及预测等,实现了真正的计算外包。

    在联邦学习中移除非规则用户的隐私保护方法

    公开(公告)号:CN114239070B

    公开(公告)日:2023-07-21

    申请号:CN202111588461.1

    申请日:2021-12-23

    Abstract: 本发明公开了一种在联邦学习中移除非规则用户的隐私保护方法,属于信息安全技术领域。本发明包括不规则用户删除算法TrustIU和保护用户的敏感信息的加权聚合协议两个部分;TrustIU利用余弦相似度进行聚合,减少了不规则用户的负面影响,从而确保全局模型主要来源于高质量的数据;在TrustIU的基础上,本发明采用安全加权的定制密码协议聚合;此聚合方案通过使用双隐蔽隐私保护技术,确保了服务器只学习用户的梯度信息,而不会泄露其他隐私。本发明在具有良好的训练精度和效率的同时,对整个培训过程中对用户退出具有鲁棒性。

    在联邦学习中移除非规则用户的隐私保护方法

    公开(公告)号:CN114239070A

    公开(公告)日:2022-03-25

    申请号:CN202111588461.1

    申请日:2021-12-23

    Abstract: 本发明公开了一种在联邦学习中移除非规则用户的隐私保护方法,属于信息安全技术领域。本发明包括不规则用户删除算法TrustIU和保护用户的敏感信息的加权聚合协议两个部分;TrustIU利用余弦相似度进行聚合,减少了不规则用户的负面影响,从而确保全局模型主要来源于高质量的数据;在TrustIU的基础上,本发明采用安全加权的定制密码协议聚合;此聚合方案通过使用双隐蔽隐私保护技术,确保了服务器只学习用户的梯度信息,而不会泄露其他隐私。本发明在具有良好的训练精度和效率的同时,对整个培训过程中对用户退出具有鲁棒性。

    一种基于隐私保护的分布式深度学习方法

    公开(公告)号:CN111563265A

    公开(公告)日:2020-08-21

    申请号:CN202010342081.9

    申请日:2020-04-27

    Abstract: 本发明公开了一种基于隐私保护的分布式深度学习方法,首先,在该方法中各个用户利用私有数据集训练本地模型并获得本地梯度,然后,各个用户利用门限加密算法对用户本地梯度数据进行加密,最后,云服务器实现安全聚合和学习模型全局参数的更新进而完成保护隐私的分布式学习训练过程。本发明将门限加密算法应用在分布式深度学习模型中,提出了安全高效的深度学习训练方法,利用门限加密的同态特性实现了梯度数据在云服务器的安全聚合,基于门限加密算法的门限特性,即使服务器与一定数量用户勾结也无法推断用户训练数据的隐私,同时,基于门限加密算法的非交互特性,本发明可以容忍用户在训练过程中有意或无意的退出行为。

    自适性保护隐私的联邦深度学习的方法

    公开(公告)号:CN110443063A

    公开(公告)日:2019-11-12

    申请号:CN201910563455.7

    申请日:2019-06-26

    Abstract: 本发明提出一种自适性保护隐私的联邦深度学习的方法,以保护联邦深度学习中用户的原始数据不被好奇的服务器获知,同时保护学习模型的参数不泄露用户原始数据的信息。各个参与者预先与云服务器协商一个网络框架,然后云服务器得到一个初始化的模型,云服务器将该模型参数广播给各个参与者;参与者下载初始化的模型参数并更新自己的本地模型,然后结合本地数据集进行训练,并基于数据属性对模型输出的不同贡献度,对不同数据特征实施有差异的隐私保护操作,参与者将各自训练得到的本地梯度发送给云服务器;最终,云服务器收集各参与者的梯度信息后更新自己的模型来进行后续的训练。本发明在满足隐私保护的前提下,极大提高学习模型的精确度。

    一种基于隐私保护技术的联合深度学习训练方法

    公开(公告)号:CN109684855A

    公开(公告)日:2019-04-26

    申请号:CN201811540698.0

    申请日:2018-12-17

    Abstract: 本发明属于人工智能技术领域,涉及一种基于隐私保护技术的联合深度学习训练方法。本发明实现了一种基于隐私保护技术的高效联合深度学习训练方法。本发明中,各个参与方首先在私有数据集上训练本地模型获得本地梯度,再将本地梯度进行拉普拉斯噪音扰动,并加密后发送至云服务器;云服务器将接收到的所有本地梯度与上一轮的密文参数进行聚合操作,并广播产生的密文参数;最终,参与方解密接收到密文参数,并更新本地模型从而进行后续的训练。本发明结合同态加密方案和差分隐私技术,提出了安全高效的深度学习训练方法,保证训练模型的精确性,同时防止服务器推断模型参数和训练数据隐私以及内部攻击获取私密信息。

    一种保护隐私的基于秘密分享的临近测试方法

    公开(公告)号:CN117202172A

    公开(公告)日:2023-12-08

    申请号:CN202311179929.0

    申请日:2023-09-13

    Abstract: 本发明提供一种保护隐私的基于秘密分享的临近测试方法,通过对针对三角函数的高效安全计算协议并将其应用于临近测试模型中使得参与方可以联合地在不向另一方直接披露自己拥有的数据值的情况下获得双方距离计算的结果。本发明在保证保护隐私位置信息的同时能够及时准确地完成临近测试,相对于已有的传统协议来说,保证了模型的整体精确度和计算结果的准确性,并大幅降低了函数评估时所需要的通信量和计算量,减少临近测试过程中的通讯开销,达到了通信高效和计算高效的预期目标,使得在实际应用中,用户所能感知到的延迟大幅下降,保证了密文下模型计算时的用户体验。

    一种新的隐私保护下非交互式的K近邻分类方法

    公开(公告)号:CN109359588B

    公开(公告)日:2021-02-09

    申请号:CN201811200446.3

    申请日:2018-10-15

    Abstract: 本发明公开了一种新的隐私保护下非交互式的K近邻分类方法,涉及大数据安全技术领域,步骤如下:1.客户端通过向量同态加密方法对由若干个带有标签的训练数据组成的训练数据集中的训练数据进行特征加密,得到密文数据集和中间矩阵,并上传至云端;2.客户端接收待分类明文向量组并对其进行加密,得到密文向量组,并上传至云端;3.云端根据密文数据集和中间矩阵计算密文向量组中每一个密文向量与密文数据集包含的所有密文数据的相似度,再根据近邻分类算法得出该密文向量组的分类结果集,将分类结果集发送至客户端。本发明极大地提高了加密的效率和安全性,实现非交互式技术,达到真正的外包计算,减小了客户端的计算压力。

Patent Agency Ranking