-
公开(公告)号:CN106684136A
公开(公告)日:2017-05-17
申请号:CN201710110260.8
申请日:2017-02-27
Applicant: 电子科技大学 , 电子科技大学广东电子信息工程研究院
IPC: H01L29/739 , H01L29/06
Abstract: 本发明提供一种SOI横向绝缘栅双极晶体管,其元胞结构包括:衬底、埋氧层、厚介质层、厚硅层N型漂移区、P阱区、P型重掺杂发射极区和N型重掺杂区、超薄顶层硅N型漂移区、N型buffer区、P型重掺杂集电极区、发射极接触电极、集电极接触电极、栅氧化层、多晶硅栅、P条、N条;本发明利用介质场增强理论增强埋层电场,从而提高SOI器件的纵向击穿电压;在靠近源端发射极区域采用厚硅层N型漂移区来降低器件比导通电阻,对于超薄顶层硅N型漂移区和厚硅层N型漂移区分别采用横向线性变掺杂,调整表面电场分布,使其在保持器件高的击穿电压的同时,极大地降低了比导通电阻。
-
公开(公告)号:CN103489915B
公开(公告)日:2016-05-11
申请号:CN201310421765.8
申请日:2013-09-16
Applicant: 电子科技大学 , 东莞电子科技大学电子信息工程研究院
Abstract: 本发明涉及功率半导体技术,具体的说是涉及一种电荷补偿的横向高压超结功率半导体器件。本发明的横向高压超结功率半导体器件,在P型衬底层表面覆盖一层N型电荷补偿层的结构,N型电荷补偿层有多种掺杂方式,包括均匀掺杂、线性掺杂及离散掺杂等。线性掺杂可以使衬底辅助耗尽作用明显减小。本发明的有益效果为,在线性掺杂的基础上使用注入选择函数对掺杂浓度进行调整得到一种优化的掺杂方式,其充分考虑理想衬底条件以及等效衬底本身的电荷平衡条件,可以更好地克服衬底辅助耗尽作用的影响,使超结LDMOS得到最优的耐压性能。本发明尤其适用于横向高压超结功率半导体器件。
-
公开(公告)号:CN115985938A
公开(公告)日:2023-04-18
申请号:CN202211736214.6
申请日:2022-12-30
Applicant: 电子科技大学 , 电子科技大学广东电子信息工程研究院
IPC: H01L29/06 , H01L21/336 , H01L29/78 , H01L29/861 , H01L29/739 , H01L21/331 , H01L21/329 , H01L21/265
Abstract: 本发明提供一种重离子注入型集成超结器件及制造方法,包括:第一导电类型半导体衬底、第二导电类型漂移区、第一导电类型阱区、第一导电类型埋层和第二导电类型埋层,位于器件表面的多晶硅栅电极,第一介质氧化层、第二介质氧化层,亚微米超结位于第一导电类型埋层和第二导电类型埋层之间,在埋层注入后采用重离子注入并透过场氧化层形成;本发明基于重离子与轻离子的扩散系数不同,通过在漂移区内引入重离子注入的亚微米超结,能够在器件内部提供低阻通路,降低开态时的比导通电阻,且不受高温推结工艺的影响;此外通过优化热预算,能够形成扩散保护环,降低器件表面电场。
-
公开(公告)号:CN112164719B
公开(公告)日:2022-03-08
申请号:CN202010888774.8
申请日:2020-08-28
Applicant: 电子科技大学 , 电子科技大学广东电子信息工程研究院
IPC: H01L29/78 , H01L29/40 , H01L21/336
Abstract: 本发明提供一种具有等势浮空槽的低阻器件,包括:第一导电类型半导体衬底、第一导电类型阱区、第一导电类型源端重掺杂区,第二导电类型漂移区、第二导电类型阱区、第二导电类型源端重掺杂区,第二导电类型漏端重掺杂区,第一介质氧化层、第二介质氧化层、第三介质氧化层,浮空场板多晶硅电极、控制栅多晶硅电极,源极金属,漏极金属,金属条;第一介质氧化层和浮空场板多晶硅电极构成纵向浮空场板,分布在整个第二导电类型漂移区中;在相同长度下,介质层能够承受更高的击穿电压,同时浮空电极能够调制漂移区电势分布,使得电势分布均匀,进一步提高了器件耐压,浮空场板辅助耗尽还可以提高漂移区注入剂量,从而降低比导通电阻。
-
公开(公告)号:CN112382658A
公开(公告)日:2021-02-19
申请号:CN202010890066.8
申请日:2020-08-28
Applicant: 电子科技大学 , 电子科技大学广东电子信息工程研究院
IPC: H01L29/40 , H01L29/78 , H01L21/336
Abstract: 本发明提供一种具有阶梯分立屏蔽槽的低栅电荷器件及其制造方法,包括:第一导电类型半导体衬底、第一导电类型阱区、第一导电类型源端重掺杂区,第二导电类型漂移区、第二导电类型阱区、第二导电类型源端重掺杂区,第二导电类型漏端重掺杂区,第一介质氧化层、第二介质氧化层、第三介质氧化层,多晶硅电极、控制栅多晶硅电极,源极金属,漏极金属,金属条;第一介质氧化层与同源极相连的多晶硅电极形成纵向场板,平行插入第二导电类型漂移区,形成阶梯状排列的纵向场板阵列。纵向场板呈阶梯状分布,优化了硅层表面电场,提高了器件耐压,且对电流的限制效果减弱,进一步降低了器件的比导通电阻,多晶硅电极与源极相连,降低了器件的栅漏电容。
-
公开(公告)号:CN106981518A
公开(公告)日:2017-07-25
申请号:CN201710203410.X
申请日:2017-03-30
Applicant: 电子科技大学 , 电子科技大学广东电子信息工程研究院
Abstract: 本发明提供一种具有超结结构的SOI横向高压器件,其元胞结构包括衬底、衬底接触电极、埋氧层、厚SOI层、P型体区、厚介质层、N型重掺杂漏极区、超薄顶层硅、N型条区和P型条区、P型重掺杂体接触区和N型重掺杂源极区、栅氧化层、源极接触电极、多晶硅栅、漏极接触电极,N型条区和P型条区构成超结结构并在Z方向交替排列地嵌入在靠近源端区域的厚SOI层中,本发明通过漏端超薄顶层硅提高器件漏端承受高压区的纵向耐压,通过大量的理论推导得到最好的横向耐压,同时靠近源端区域采用超结使其在保持功率MOS高的击穿电压的同时极大地降低了比导通电阻,有着较低的导通损耗,最终达到有效减小器件面积、降低器件成本的目的。
-
公开(公告)号:CN106981505A
公开(公告)日:2017-07-25
申请号:CN201710203993.6
申请日:2017-03-30
Applicant: 电子科技大学 , 电子科技大学广东电子信息工程研究院
Abstract: 本发明提供一种半薄硅层结构的横向高压器件,其元胞结构包括衬底、埋氧层、超薄顶层硅、厚SOI层、厚介质层、P型体区、P型重掺杂体接触区、N型重掺杂源极区、N型重掺杂漏极区、栅氧化层、源极接触电极、多晶硅栅、漏极接触电极和衬底接触电极,本发明采用部分超薄顶层硅提高器件的纵向耐压,采用厚SOI层为开态电流提供更广阔的电流导通路径,从而降低器件的比导通电阻;分别采用横向线性变掺杂技术,调制各自的表面电场分布,同时产生额外的电荷来消除衬底辅助耗尽效应,使其在保持功率MOS高的击穿电压的同时,极大地降低了器件的比导通电阻,有着较低的导通损耗,最终达到有效减小器件面积、降低器件成本的目的。
-
公开(公告)号:CN103426913B
公开(公告)日:2016-08-31
申请号:CN201310345306.6
申请日:2013-08-09
Applicant: 电子科技大学 , 东莞电子科技大学电子信息工程研究院
Abstract: 本发明涉及半导体技术,具体的说是涉及一种部分SOI超结高压功率半导体器件。本发明所述的一种部分SOI超结高压功率半导体器件,其特征在于,还包括多个N+岛和P型电场屏蔽层,所述多个N+岛均匀嵌入设置在P型衬底中,所述P型电场屏蔽层设置在P型衬底中,并且上表面与P型体区和靠近源端的N型缓冲区的下表面连接、下表面与埋氧层的上表面连接。本发明的有益效果为,通过改变电场分布,提高漂移区掺杂浓度,进而提高器件耐压和降低比导通电阻,减小器件面积,降低成本。本发明尤其适用于部分SOI超结高压功率半导体器件。
-
公开(公告)号:CN117673154A
公开(公告)日:2024-03-08
申请号:CN202311338150.9
申请日:2023-10-16
Applicant: 电子科技大学 , 电子科技大学广东电子信息工程研究院
IPC: H01L29/78 , H01L21/336 , H01L29/06
Abstract: 本发明提供一种具有哑铃状体内埋层的新型LDMOS结构及制造方法,包括:第一导电类型半导体衬底、第二导电类型漂移区、第一导电类型阱区、第一导电类型埋层、第二导电类型埋层、位于器件表面的多晶硅栅电极、第一介质氧化层、第二介质氧化层。第一导电类型埋层和第二导电类型埋层位于漂移区体内;本发明通过新型工艺制造方法在漂移区引入哑铃状第一导电类型埋层与条形第二导电类型埋层,使器件漂移区内开态时形成更宽的导电路径,能够实现比导通电阻的降低;此外,该结构能够优化器件表面电场分布,解决器件可靠性的问题。
-
公开(公告)号:CN111969051B
公开(公告)日:2023-01-24
申请号:CN202010888687.2
申请日:2020-08-28
Applicant: 电子科技大学 , 电子科技大学广东电子信息工程研究院
IPC: H01L29/423 , H01L29/78 , H01L21/336 , H01L29/06
Abstract: 本发明提供一种具有高可靠性的分离栅VDMOS器件及其制造方法,包括第一导电类型衬底,第一导电类型漂移区,第一介质氧化层,分离栅多晶电极,第二介质氧化层,第三介质氧化层,控制栅多晶电极,第二导电类型阱区,重掺杂第一导电类型区,重掺杂第二导电类型区,源极金属接触,控制栅金属接触和分离栅金属接触。通过在过渡区增大槽宽,增加一次过渡区栅多晶刻蚀,形成控制栅多晶和栅氧化层包围分离栅金属接触的结构,避免了常规分离栅引出所需要的控制栅和分离栅之间的介质氧化层隔离,杜绝了厚氧隔离所带来的吸硼排磷问题和曲率效应带来的电场集中问题,以及存在厚氧隔离时过渡区耗尽不足问题,消除器件过渡区的提前击穿,保证器件耐压。
-
-
-
-
-
-
-
-
-