-
公开(公告)号:CN107977011B
公开(公告)日:2020-03-24
申请号:CN201711432615.1
申请日:2017-12-26
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于分数阶控制算法的四旋翼无人机飞行控制方法,控制器整体使用反步控制结构,将四旋翼无人机的二阶非线性系统拆分为两个子系统,并分别构建满足李亚普诺夫稳定性理论的控制律,并通过虚拟中间控制变量将二者串联成为一完整控制器,使控制器能够很好的适配系统的非线性,且具有良好的完整性;同时,为了增强控制器的抗扰动能力和鲁棒性,在第二次反步设计时,对被控变量进行滑模控制设计,引入滑模控制的高抗扰能力、强鲁棒性。
-
公开(公告)号:CN110307983A
公开(公告)日:2019-10-08
申请号:CN201910530487.7
申请日:2019-06-19
Applicant: 电子科技大学
IPC: G01M13/045 , G06K9/62
Abstract: 本发明公开了一种基于CNN-Bagging的无人机轴承故障诊断方法,先采集轴承信号,再对轴承信号预处理,提取出时域信号和时频域信号;然后分别基于时域信号和时频域信号通过集成学习算法构建时域弱分类模和时频域弱分类模,最后通过时域弱分类模和时频域弱分类模预测出待检测无人机轴承信号的隶属概率值,从而实现无人机轴承故障诊断。
-
公开(公告)号:CN107977011A
公开(公告)日:2018-05-01
申请号:CN201711432615.1
申请日:2017-12-26
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于分数阶控制算法的四旋翼无人机飞行控制方法,控制器整体使用反步控制结构,将四旋翼无人机的二阶非线性系统拆分为两个子系统,并分别构建满足李亚普诺夫稳定性理论的控制律,并通过虚拟中间控制变量将二者串联成为一完整控制器,使控制器能够很好的适配系统的非线性,且具有良好的完整性;同时,为了增强控制器的抗扰动能力和鲁棒性,在第二次反步设计时,对被控变量进行滑模控制设计,引入滑模控制的高抗扰能力、强鲁棒性。
-
公开(公告)号:CN107457783A
公开(公告)日:2017-12-12
申请号:CN201710611493.6
申请日:2017-07-25
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于PD控制器的六自由度机械臂自适应智能检测方法,通过高精度激光跟踪仪对待测试件进行空间位置坐标静态标定或者动态跟踪,获得高精度的空间位姿点,再通过将运动学和动力学结合的建模、仿真方法,在运动学过程中,通过给出的位姿点巧妙的逆解出关节角,在动力学中,通过设计PD控制器,精确的进行路径跟踪闭环控制,使整个系统结合高精度激光跟踪仪和六自由度机械臂,实现对物体的精确定位和智能化自适应检测,更符合实际工业的需求。
-
公开(公告)号:CN110307983B
公开(公告)日:2021-01-26
申请号:CN201910530487.7
申请日:2019-06-19
Applicant: 电子科技大学
IPC: G01M13/045 , G06K9/62
Abstract: 本发明公开了一种基于CNN‑Bagging的无人机轴承故障诊断方法,先采集轴承信号,再对轴承信号预处理,提取出时域信号和时频域信号;然后分别基于时域信号和时频域信号通过集成学习算法构建时域弱分类模和时频域弱分类模,最后通过时域弱分类模和时频域弱分类模预测出待检测无人机轴承信号的隶属概率值,从而实现无人机轴承故障诊断。
-
公开(公告)号:CN107414827B
公开(公告)日:2021-01-26
申请号:CN201710611496.X
申请日:2017-07-25
Applicant: 电子科技大学
IPC: B25J9/16
Abstract: 本发明公开了一种基于线性反馈控制器的六自由度机械臂自适应检测方法,通过高精度激光跟踪仪对待测试件进行空间位置坐标静态标定或者动态跟踪,获得高精度的空间位姿点,再通过将运动学和动力学结合的建模、仿真方法,在运动学过程中,通过给出的位姿点巧妙的逆解出关节角,在动力学中,通过设计线性反馈控制器,精确的进行路径跟踪闭环控制,使整个系统结合高精度激光跟踪仪和六自由度机械臂,实现对物体的精确定位和智能化自适应检测,更符合实际工业的需求。
-
-
公开(公告)号:CN108681327B
公开(公告)日:2020-05-08
申请号:CN201810372033.7
申请日:2018-04-24
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于分数阶饱和函数切换控制律的四旋翼飞行控制方法,利用反步控制法将系统拆分为两个子系统,再分别用传统的反步控制方法和滑模控制方法对两个子系统设计满足李亚普诺夫定理的子控制律;具体讲,反步控制法是为了继承其完整性和统一性,滑模控制方法是为了提高鲁棒性和抗干扰能力;本发明在使用滑模控制方法时又引入了分数阶饱和函数幂次切换律,用以提高控制器性能,并抑制抖颤,这样保证四旋翼无人机的飞行控制的快速响应,同时,通过调整饱和函数参数,还能改善控制器的非线性特性,滤除控制器输出中的抖颤,提升控制器的平滑性。
-
公开(公告)号:CN107992082B
公开(公告)日:2020-05-08
申请号:CN201711430426.0
申请日:2017-12-26
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于分数阶幂次切换律的四旋翼无人机飞行控制方法,控制器整体使用反步控制结构,将四旋翼无人机的二阶非线性系统拆分为两个子系统,并分别构建满足李亚普诺夫稳定性理论的控制律,并通过虚拟中间控制变量将二者串联成为一完整控制器,使控制器能够很好的适配系统的非线性,且具有良好的完整性;同时,为了增强控制器的抗扰动能力和鲁棒性,在第二次反步设计时,对被控变量进行滑模控制设计,引入滑模控制的高抗扰能力、强鲁棒性。
-
公开(公告)号:CN107992082A
公开(公告)日:2018-05-04
申请号:CN201711430426.0
申请日:2017-12-26
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于分数阶幂次切换律的四旋翼无人机飞行控制方法,控制器整体使用反步控制结构,将四旋翼无人机的二阶非线性系统拆分为两个子系统,并分别构建满足李亚普诺夫稳定性理论的控制律,并通过虚拟中间控制变量将二者串联成为一完整控制器,使控制器能够很好的适配系统的非线性,且具有良好的完整性;同时,为了增强控制器的抗扰动能力和鲁棒性,在第二次反步设计时,对被控变量进行滑模控制设计,引入滑模控制的高抗扰能力、强鲁棒性。
-
-
-
-
-
-
-
-
-