具有低温绕组的电机转子接头结构及具有其的电机

    公开(公告)号:CN112096988A

    公开(公告)日:2020-12-18

    申请号:CN202011243482.5

    申请日:2020-11-10

    Applicant: 清华大学

    Abstract: 本发明公开了一种具有低温绕组的电机转子接头结构及具有其的电机,电机转子接头结构包括低温输入侧密封法兰;转子侧密封法兰;可压缩叠片式波纹管;氦气管接头支撑筒;挡板;连杆;橡胶套;低温输入侧氦气管;氦气管可拆卸式接头;波纹管式氦气管;转子内部氦气管;氦气管接头保持架。根据本发明的具有低温绕组的电机转子接头结构,可将电机转子内部真空腔体与低温输入侧转轴内真空腔体柔性连通;通过低温输入侧氦气管、波纹管式氦气管、氦气管可拆卸式接头及转子内部氦气管,可将外部低温系统与电机转子内部低温氦气管路柔性连接;通过低温输入侧密封法兰、挡板、连杆、橡胶套及转子侧密封法兰,可将低温输入侧转轴与电机转子弹性机械连接。

    具有低温绕组的电机转子接头结构及具有其的电机

    公开(公告)号:CN112096988B

    公开(公告)日:2021-06-04

    申请号:CN202011243482.5

    申请日:2020-11-10

    Applicant: 清华大学

    Abstract: 本发明公开了一种具有低温绕组的电机转子接头结构及具有其的电机,电机转子接头结构包括低温输入侧密封法兰;转子侧密封法兰;可压缩叠片式波纹管;氦气管接头支撑筒;挡板;连杆;橡胶套;低温输入侧氦气管;氦气管可拆卸式接头;波纹管式氦气管;转子内部氦气管;氦气管接头保持架。根据本发明的具有低温绕组的电机转子接头结构,可将电机转子内部真空腔体与低温输入侧转轴内真空腔体柔性连通;通过低温输入侧氦气管、波纹管式氦气管、氦气管可拆卸式接头及转子内部氦气管,可将外部低温系统与电机转子内部低温氦气管路柔性连接;通过低温输入侧密封法兰、挡板、连杆、橡胶套及转子侧密封法兰,可将低温输入侧转轴与电机转子弹性机械连接。

    霍尔探头有效测量位置的测定方法

    公开(公告)号:CN109855521B

    公开(公告)日:2020-08-04

    申请号:CN201910008333.1

    申请日:2019-01-04

    Abstract: 霍尔探头有效测量位置的测定方法,属于磁场测量领域。将标准导线安装在样品台上;霍尔探头移动到接近标准导线;标准导线通电,并移动霍尔探头到导线的中心位置;测量已知通电标准导线的中心位置的磁场强度。根据标准导线的磁感应强度B、电流I、高度h和标准导线的尺寸参数的关系式,基于使用的电流值、测得的磁感应强度值和标准导线的尺寸参数值,计算得到霍尔探头有效测量位置距离探头底部高度h的值。更优的通过修改电流值多次测量,或通过使用不同宽度的标准导线来进行多次测量,使用数据拟合的方法获得更高的精度。

    一种利用脱层超导带材堆叠超导磁体的方法

    公开(公告)号:CN110581015A

    公开(公告)日:2019-12-17

    申请号:CN201910768031.4

    申请日:2019-08-20

    Applicant: 清华大学

    Abstract: 本发明涉及一种利用脱层超导带材堆叠超导磁体的方法,属于超导磁体应用技术领域。首先利用物理或化学方法对超导带材进行脱层处理,使得超导带材中的超导层和过渡层脱离,得到脱层超导带材;采用机械裁剪、线切割或激光切割方法,对脱层超导带材进行裁剪,得到尺寸形状一致的脱层超导带材;将脱层超导带材,沿带材表面的法线方向,按照超导面以相背、相向或同向的方式依次堆叠,然后置于容器中压制,得到超导磁体初品;将压制好的超导磁体初品进行浸渍固化处理;对超导磁体初品进行磁化处理,得到超导磁体。采用本发明方法制得的超导磁体,能够很好的克服磁化过程中高温超导体内部产生的强烈应力冲击和较高的热量,因此具有较高的热稳定性。

    一种制作稀土钡铜氧超导膜的方法

    公开(公告)号:CN107342140B

    公开(公告)日:2019-03-15

    申请号:CN201710633336.5

    申请日:2017-07-28

    Abstract: 本发明公开了一种制作稀土钡铜氧超导膜的方法。该方法包括以下步骤:(a)配制含有稀土元素离子、钡离子、铜离子与溶剂的前驱溶液;(b)通过不高于20℃的恒温方式控制涂覆温度,控制基底和前驱溶液在同一设定温度,将前驱溶液涂覆于基底上得到前驱膜;(c)将前驱膜置入热处理炉中,通过热分解、烧结和充氧步骤获得稀土钡铜氧超导膜。通过控制涂覆温度处在特定的恒定温度,有效地增加薄膜的厚度。

Patent Agency Ranking