一种融合雨量站、监控图像和数值天气预报的实时降雨场同化方法

    公开(公告)号:CN118503906B

    公开(公告)日:2024-11-01

    申请号:CN202410558495.3

    申请日:2024-05-08

    Abstract: 本发明公开了一种融合雨量站、监控图像和数值天气预报的实时降雨场同化方法,所述技术通过分解监控图像中降雨层,建立深度学习模型求解降雨强度,将点状分布的地面雨量站和监控图像降雨数据进行空间插值,得到两种独立源降雨的空间分布;并结合数值天气预报中降雨空间分布数据,利用贝叶斯融合技术得到同化后的更精确的实时降雨场结果。本发明提供的用于获取更为精确的实时降雨场同化方法,克服了目前气象水文领域中独立来源降雨数据难以同时保证“准确的点估计、可靠的空间变化”的弊端或者是多种来源降雨信息同化时难以考虑监控图像测雨的问题,适用于城市暴雨洪涝实时预报预警,为城市防洪减灾与应急管理提供技术依据。

Patent Agency Ranking