-
-
公开(公告)号:CN114578308A
公开(公告)日:2022-06-03
申请号:CN202210227195.8
申请日:2022-03-08
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于混合多普勒的旋翼目标特征提取方法,其特征是,包括如下步骤:1)构建圆阵天线与旋翼目标的数学模型、推导回波信号函数;2)混合多普勒特征分析;3)发射不同模态涡旋电磁波束、对回波进行信号处理;4)目标特征参数估计;5)目标识别。本发明实验结果表明,分析混合多普勒特征,可有效反演出旋翼目标的叶片数、叶片长度、转速、位置信息等多个特征,相比于传统单一多普勒特征提取,对旋翼目标的具体识别能提供更多更充分的依据。
-
公开(公告)号:CN113162879A
公开(公告)日:2021-07-23
申请号:CN202110479674.4
申请日:2021-04-30
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种联合特征提取的调制信号识别方法,其特征在于,包括如下步骤:1)信号接收;2)信号预处理;3)特征参数提取;4)设置判决门限;5)分类识别。这种方法所需特征参数少、步骤简洁、复杂度低,在低信噪比下识别率高且能弥补高阶累计量单一特征的局限,适用于多种不同类型的调制信号识别。
-
公开(公告)号:CN112689288A
公开(公告)日:2021-04-20
申请号:CN202011501531.0
申请日:2020-12-18
Applicant: 桂林电子科技大学
IPC: H04W12/121 , H04W12/122 , G06K9/00 , G06K9/52 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于WANN的射频指纹提取和识别方法,其特征是,包括如下步骤:1)采集待识别无线电设备信号;2)双谱非参数估计;3)使用MATLAB软件生成双谱等高图;4)生成数据集并预处理;5)训练WANN;6)采用训练好的WANN识别设备。这种方法能省去人为提取特征与设计神经网络结构的时间成本,抗噪声性能好,识别精度高。
-
公开(公告)号:CN112731367B
公开(公告)日:2023-07-14
申请号:CN202011506299.X
申请日:2020-12-18
Applicant: 桂林电子科技大学
IPC: G01S13/58
Abstract: 本发明公开了基于涡旋电磁波的旋翼目标特征分析及提取方法,其特征是,包括如下步骤:S1建立涡旋电磁波对旋翼目标的回波数学模型;S2回波信号的特征分析;S3分别发射正负模态数的涡旋电磁波,计算回波信号中的总多普勒;S4和差运算;S5改变涡旋电磁波模态数,重复步骤S3、S4;S6整理微多普勒频率和旋转多普勒频率。这种方法能分离出微多普勒频率和旋转多普勒频率,对旋翼目标的探测和识别准确率高。
-
公开(公告)号:CN111639595B
公开(公告)日:2022-03-18
申请号:CN202010473731.3
申请日:2020-05-29
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于权重不可知神经网络的无人机微动特征信号检测方法,其特征是,包括如下步骤:1)计算信号的循环谱;2)通过MATLAB处理得到循环谱等高图,并选择观测区域;3)训练权重不可知神经网络;4)利用训练好的权重不可知神经网络进行微动特征识别。这种方法有很好的抗干扰性,神经网络的结构更简单,计算量更小,对无人机微动特征信号识别的准确率更高。
-
-
公开(公告)号:CN112731367A
公开(公告)日:2021-04-30
申请号:CN202011506299.X
申请日:2020-12-18
Applicant: 桂林电子科技大学
IPC: G01S13/58
Abstract: 本发明公开了基于涡旋电磁波的旋翼目标特征分析及提取方法,其特征是,包括如下步骤:S1建立涡旋电磁波对旋翼目标的回波数学模型;S2回波信号的特征分析;S3分别发射正负模态数的涡旋电磁波,计算回波信号中的总多普勒;S4和差运算;S5改变涡旋电磁波模态数,重复步骤S3、S4;S6整理微多普勒频率和旋转多普勒频率。这种方法能分离出微多普勒频率和旋转多普勒频率,对旋翼目标的探测和识别准确率高。
-
公开(公告)号:CN114266312B
公开(公告)日:2024-03-22
申请号:CN202111582991.5
申请日:2021-12-22
Applicant: 桂林电子科技大学
IPC: G06F18/214 , G06N3/0464 , G06N3/08 , H04L69/18
Abstract: 本发明公开了一种基于多任务学习的射频指纹和通信协议的识别方法,包括如下步骤:1)获取接收机端信号;2)信号预处理;3)对I/Q信号进行差分处理得到差分星座轨迹图:4)制作神经网络的输入数据集;5)多任务神经网络训练;6)进行射频指纹识别和无线通信协议识别。这种方法能在单任务的基础上提高识别准确率和缩短训练时间,并且差分星座轨迹图能消除因频偏导致的星座图旋转的情况。
-
公开(公告)号:CN114553364A
公开(公告)日:2022-05-27
申请号:CN202210189825.7
申请日:2022-02-28
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于PYNQ的无人机识别系统及识别方,所述无人机识别系统采用信号接收装置接收待识别无人机信号,将信号通过RJ45接口传送给PYNQ‑Z2,从接收到的射频信号中提取三阶累积量,作为每台无人机唯一的射频指纹特征,基于得到的无人机射频指纹特征,使用神经网络对射频指纹特征进行分类,利用神经网络加速IP核进行加速计算,可以对需要进行认证的无人机身份进行实时识别和认证。
-
-
-
-
-
-
-
-
-